Escherichia coli DnaK and rat Hsc70 are members of the highly conserved 70-kDa heat shock protein (Hsp70) family that show strong sequence and structure similarities and comparable functional properties in terms of interactions with peptides and unfolded proteins and cooperation with cochaperones. We show here that, while the DnaK protein is, as expected, able to complement an E. coli dnaK mutant strain for growth at high temperatures and lambda phage propagation, Hsc70 protein is not. However, an Hsc70 in which the peptide-binding domain has been replaced by that of DnaK is able to complement this strain for both phenotypes, suggesting that the peptide-binding domain of DnaK is essential to fulfill the specific functions of this protein necessary for growth at high temperatures and for lambda phage replication. The implications of these findings on the functional specificities of the Hsp70s and the role of protein-protein interactions in the DnaK chaperone system are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC515143PMC
http://dx.doi.org/10.1128/JB.186.18.6248-6253.2004DOI Listing

Publication Analysis

Top Keywords

coli dnak
12
escherichia coli
8
growth high
8
high temperatures
8
temperatures lambda
8
lambda phage
8
peptide-binding domain
8
dnak
7
complementation escherichia
4
dnak defect
4

Similar Publications

Background: Recombinant proteins produced in the cell factories are used in biological research, pharmaceutical production, and biochemical and agricultural applications. Molecular chaperones, such as heat shock proteins (Hsps), are co-expressed with recombinant proteins to enhance their yield, stability, and activity. When () is used as a cell factory, Hsps are the frequently used co-expression partners.

View Article and Find Full Text PDF

RcsF-independent mechanisms of signaling within the Rcs phosphorelay.

PLoS Genet

December 2024

Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America.

The Rcs (regulator of capsule synthesis) phosphorelay is a conserved cell envelope stress response mechanism in enterobacteria. It responds to perturbations at the cell surface and the peptidoglycan layer from a variety of sources, including antimicrobial peptides, beta-lactams, and changes in osmolarity. RcsF, an outer membrane lipoprotein, is the sensor for this pathway and activates the phosphorelay by interacting with an inner membrane protein IgaA.

View Article and Find Full Text PDF

Constructing High-Yielding for (-)-α-Bisabolol Production Based on the Exogenous Haloarchaeal MVA Pathway and Endogenous Molecular Chaperones.

J Agric Food Chem

December 2024

The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.

(-)-α-Bisabolol exhibits analgesic, anti-inflammatory, and skin-soothing properties and is widely applied in the cosmetic and pharmaceutical industries. The use of plant essential oil distillation or chemical synthesis to produce (-)-α-bisabolol is both inefficient and unsustainable. Currently, the microbial production of (-)-α-bisabolol mainly relies on and as chassis strains; however, high concentrations of (-)-α-bisabolol have certain toxicity to the strain.

View Article and Find Full Text PDF

Introduction: The molecular mechanisms underlying pressure adaptation remain largely unexplored, despite their significance for understanding biological adaptation and improving sterilization methods in the food and beverage industry. The heat shock response leads to a global stabilization of the proteome. Prior research suggested that the heat shock regulon may exhibit a transcriptional response to high-pressure stress.

View Article and Find Full Text PDF

Triosephosphate isomerase (TpiA) is widely regarded as an example of an optimally evolved enzyme due to its essential role in biological systems, its structural conservation, and its near-perfect kinetic parameters. In this study, we investigated the structural robustness of the archetypal TpiA variant from Escherichia coli using an in vitro 5-amino acid linker scanning method. The resulting library was introduced into a tpiA mutant strain for functional complementation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!