Mutations to the canonical +1G of introns, which are commonly found in many human inherited disease alleles, invariably result in aberrant splicing. Here we report genetic findings in C. elegans that aberrant splicing due to +1G mutations can be suppressed by U1 snRNA mutations. An intronic +1G-to-U mutation, e936, in the C. elegans unc-73 gene causes aberrant splicing and loss of gene function. We previously showed that mutation of the sup-39 gene promotes splicing at the mutant splice donor in e936 mutants. We demonstrate here that sup-39 is a U1 snRNA gene; suppressor mutations in sup-39 are compensatory substitutions in the 5' end, which enhance recognition of the mutant splice donor. sup-6(st19) is an allele-specific suppressor of unc-13(e309), which contains an intronic +1G-to-A transition. The e309 mutation activates a cryptic splice site, and sup-6(st19) restores splicing to the mutant splice donor. sup-6 also encodes a U1 snRNA and the mutant contains a compensatory substitution at its 5' end. This is the first demonstration that U1 snRNAs can act to suppress the effects of mutations to the invariant +1G of introns. These findings are suggestive of a potential treatment of certain alleles of inherited human genetic diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1471001 | PMC |
http://dx.doi.org/10.1534/genetics.104.028746 | DOI Listing |
Epilepsia
January 2025
Applied Translational Neurogenomics Group, Vlaams Instituut voor Biotechnology (VIB) Center for Molecular Neurology, VIB, Antwerp, Belgium.
Objective: This study aims to improve genetic diagnosis in childhood onset epilepsy with neurodevelopmental problems by utilizing RNA sequencing of fibroblasts to identify pathogenic variants that may be missed by exome sequencing and copy number variation analysis.
Methods: We enrolled 41 individuals with childhood onset epilepsy and neurodevelopmental problems who previously had inconclusive genetic testing. Fibroblast samples were cultured and analyzed using RNA sequencing to detect aberrant expression, aberrant splicing, and monoallelic expression using the Detection of RNA Outlier Pipeline (DROP) pipeline.
Asian Pac J Cancer Prev
January 2025
Principal Scientific Officer & Molecular Advisor, Rajiv Gandhi Cancer Institute & Research Centre, New Delhi, India.
Chronic lymphocytic leukemia (CLL) is a less common hematological malignancy in Indian people. It accounts for less than 5% of all leukemias. Information on genomic alteration in CLL is limited immunoglobulin heavy-chain variable region (IGHV) mutational status is considered the most reliable prognostic marker.
View Article and Find Full Text PDFEur J Hum Genet
January 2025
CENTOGENE GmbH, Rostock, Germany.
We aimed to assess the impact of splicing variants reported in our laboratory to gain insight into their clinical relevance. A total of 108 consecutive individuals, for whom 113 splicing variants had been reported, were selected for RNA-sequencing (RNA-seq), considering the gene expression in blood. A protocol was developed to perform RNA extraction and sequencing using the same sample (dried blood spots, DBS) provided for the DNA analysis, including library preparation and bioinformatic pipeline analysis.
View Article and Find Full Text PDFEur J Hum Genet
January 2025
Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.
The etiology of congenital heart disease (CHD) is complex, comprising both genetic and environmental factors. Despite documented familial occurrences, the genetic etiology remains largely elusive. Trio exome sequencing identified a heterozygous FLT4 splice site variant in two families with respectively tetralogy of Fallot (TOF), and variable CHD comprising both the TOF spectrum and aortic coarctation.
View Article and Find Full Text PDFMol Metab
January 2025
Department of Biological Chemistry, School of Medicine, University of California, Irvine, USA. Electronic address:
Objective: Many cancer cells depend on exogenous methionine for proliferation, whereas non-tumorigenic cells can divide in media supplemented with the metabolic precursor homocysteine. This phenomenon is known as methionine dependence of cancer or methionine addiction. The underlying mechanisms driving this cancer-specific metabolic addiction are poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!