Unusual Cys-Tyr covalent bond in a large catalase.

J Mol Biol

Instituto de Fisiología Celular Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, México, D.F., CP 04510, México.

Published: September 2004

Catalase-1, one of four catalase activities of Neurospora crassa, is associated with non-growing cells and accumulates in asexual spores. It is a large, tetrameric, highly efficient, and durable enzyme that is active even at molar concentrations of hydrogen peroxide. Catalase-1 is oxidized at the heme by singlet oxygen without significant effects on enzyme activity. Here we present the crystal structure of catalase-1 at 1.75A resolution. Compared to structures of other catalases of the large class, the main differences were found at the carboxy-terminal domain. The heme group is rotated 180 degrees around the alpha-gamma-meso carbon axis with respect to clade 3 small catalases. There is no co-ordination bond of the ferric ion at the heme distal side in catalase-1. The catalase-1 structure exhibited partial oxidation of heme b to heme d. Singlet oxygen, produced catalytically or by photosensitization, may hydroxylate C5 and C6 of pyrrole ring III with a subsequent formation of a gamma-spirolactone in C6. The modification site in catalases depends on the way dioxygen exits the protein: mainly through the central channel or the main channel in large and small catalases, respectively. The catalase-1 structure revealed an unusual covalent bond between a cysteine sulphur atom and the essential tyrosine residue of the proximal side of the active site. A peptide with the predicted theoretical mass of the two bound tryptic peptides was detected by mass spectrometry. A mechanism for the Cys-Tyr covalent bond formation is proposed. The tyrosine bound to the cysteine residue would be less prone to donate electrons to compound I to form compound II, explaining catalase-1 resistance to substrate inhibition and inactivation. An apparent constriction of the main channel at Ser198 lead us to propose a gate that opens the narrow part of the channel when there is sufficient hydrogen peroxide in the small cavity before the gate. This mechanism would explain the increase in catalytic velocity as the hydrogen peroxide concentration rises.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2004.07.027DOI Listing

Publication Analysis

Top Keywords

covalent bond
12
hydrogen peroxide
12
cys-tyr covalent
8
heme singlet
8
singlet oxygen
8
small catalases
8
catalase-1 structure
8
main channel
8
catalase-1
7
heme
5

Similar Publications

Temperature-dependent pathways in carbon dioxide electroreduction.

Sci Bull (Beijing)

January 2025

Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China. Electronic address:

Temperature affects both the thermodynamics of intermediate adsorption and the kinetics of elementary reactions. Despite its extensive study in thermocatalysis, temperature effect is typically overlooked in electrocatalysis. This study investigates how electrolyte temperature influences CO electroreduction over Cu catalysts.

View Article and Find Full Text PDF

Fluorescent distinguishing flavonoid glycosides against aglycones based on the selective recognization of boric acid-functional Eu(III)-organic framework.

Talanta

January 2025

State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China. Electronic address:

Flavonoid glycosides are formed by dehydration condensation of aglycones and sugar molecules. Therefore, discrimination of flavonoid glycosides from their corresponding aglycones is a challenging task because they contain the same aglycone part in their molecular structures. Herein, boric acid-functional Eu(III)-organic framework (BA-Eu-MOF) was applied to discriminate flavonoid glycosides including baicalin (Bai), wogonoside (Wog), rutin (Rut), puerarin (Pue), quercitrin (Que) and astragalin (Ast) from their corresponding aglycones for the first time.

View Article and Find Full Text PDF

The ubiquitin (Ub) ligase E6AP, which is encoded by the UBE3A gene, has been associated with several human diseases including cervical cancer and Angelman syndrome, a neurodevelopmental disorder. Yet, our knowledge about disease-relevant substrates of E6AP is still limited. The formation of a thioester complex between Ub and the catalytic Cys residue of E6AP represents an essential intermediate step in E6AP-mediated ubiquitination.

View Article and Find Full Text PDF

Mass spectrometry (MS) has become a critical tool in the characterization of covalently modified nucleic acids. Well-developed bottom-up approaches, where nucleic acids are digested with an endonuclease and the resulting oligonucleotides are separated before MS and MS/MS analysis, provide substantial insight into modified nucleotides in biological and synthetic nucleic. Top-down MS presents an alternative approach where the entire nucleic acid molecule is introduced to the mass spectrometer intact and then fragmented by MS/MS.

View Article and Find Full Text PDF

Host defense antimicrobial peptides (AMPs) are promising lead molecules with which to develop antibiotics against drug-resistant bacterial pathogens. Thanatin, an inducible antimicrobial peptide involved in the host defense of insects, is gaining considerable attention in the generation of novel classes of antibiotics. Thanatin or thanatin-based analog peptides are extremely potent in killing bacterial pathogens in the Enterobacteriaceae family, including drug-resistant strains of and .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!