Equilibrium partition coefficients (phi, the concentration in the gel divided by that in free solution) of fluorescein-labeled Ficolls in pure agarose and agarose-dextran composite gels were measured as a function of gel composition and Ficoll size. The four narrow fractions of Ficoll, a spherical polysaccharide, had Stokes-Einstein radii ranging from 2.7 to 5.9 nm. Gels with agarose volume fractions of 0.040 and 0.080 were studied, with dextran volume fractions (calculated as if the chain were a long fiber) up to 0.011. As expected, phi generally decreased as the Ficoll size increased (for a given gel composition) or as the amount of dextran incorporated into the gel increased (for a given agarose concentration and Ficoll size). The decrease in phi that accompanied dextran addition was predicted well by an excluded volume theory in which agarose and dextran were both treated as rigid, straight, randomly positioned and oriented fibers. Modeling dextran as a spherical coil within a fibrous agarose gel produced much less accurate predictions. The diffusional permeabilities of these gels were assessed by combining the current partitioning data with relative diffusivities (Kd, the diffusivity in the gel divided by that in free solution) reported previously. The values of phi Kd for a synthetic gel with 8.0% agarose and 1.1% dextran (by volume) were found to be very similar to those for the glomerular basement membrane, a physiologically important material which also has a total solids content of approximately 10%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2004.04.063 | DOI Listing |
Nano Lett
January 2025
Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States.
Atomically thin 2D materials present the potential for advancing membrane separations via a combination of high selectivity (from molecular sieving) and high permeance (due to atomic thinness). However, the creation of a high density of precise nanopores (narrow-size-distribution) over large areas in 2D materials remains challenging, and nonselective leakage from nanopore heterogeneity adversely impacts performance. Here, we demonstrate protein-enabled size-selective defect sealing (PDS) for atomically thin graphene membranes over centimeter scale areas by leveraging the size and reactivity of permeating proteins to preferentially seal larger nanopores (≥4 nm) while preserving a significant amount of smaller nanopores (via steric hindrance).
View Article and Find Full Text PDFNano Lett
April 2024
Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland.
Metabolites play crucial roles in cellular processes, yet their diffusion in the densely packed interiors of cells remains poorly understood, compounded by conflicting reports in existing studies. Here, we employ pulsed-gradient stimulated-echo NMR and Brownian/Stokesian dynamics simulations to elucidate the behavior of nano- and subnanometer-sized tracers in crowded environments. Using Ficoll as a crowder, we observe a linear decrease in tracer diffusivity with increasing occupied volume fraction, persisting─somewhat surprisingly─up to volume fractions of 30-40%.
View Article and Find Full Text PDFJ Phys Chem B
August 2023
Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw 01-224, Poland.
Immunoglobulin G (IgG) is the most common type of antibody found in blood and extracellular fluids and plays an essential role in our immune response. However, studies of the dynamics and reaction kinetics of IgG-antigen binding under physiological crowding conditions are scarce. Herein, we develop a coarse-grained model of IgG consisting of only six beads that we find minimal for a coarse representation of IgG's shape and a decent reproduction of its flexibility and diffusion properties measured experimentally.
View Article and Find Full Text PDFSoft Matter
August 2023
Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
The intriguing role of the intracellular crowded environment in regulating protein aggregation remains elusive. The convolution of several factors such as the protein sequence-dependence, crowder's shape and size and diverse intermolecular interactions makes it complex to identify systematic trends. One of the ways to simplify the problem is to study a synthetic model for self-assembling proteins.
View Article and Find Full Text PDFHeliyon
June 2023
Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 43, 84081 Baronissi SA, Italy.
Background: Contribution of peripheral blood mononuclear cells (PBMCs) in myogenesis is still under debate, even though blood filtration systems are commonly used in clinical practice for successfully management of critic limb ischemia.
Objectives: A commercial blood filter used for autologous PBMC transplantation procedures is characterized and used to collect PBMCs, that are then added to well-established 2D myogenic models assembled with a co-culture of bone marrow-derived mesenchymal stem cells (BM-MSCs) and skeletal myoblasts (SkMs) whit the aim of investigating their potential contribution to stem cell myogenic commitment.
Methods: A commercial blood filter was physically and chemically studied to understand its morphological characteristics and composition.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!