Despite the identification of essential processes in which cell fusion plays spectacular roles such as in fertilization and development of muscle, bone, and placenta, there are no identified proteins that directly mediate developmental cell fusion reactions. C. elegans has recently become among the best-characterized models to use for studying developmental cell fusion. The eff-1 (epithelial fusion failure) gene encodes novel type I membrane proteins required for epithelial cell fusion. Analysis of eff-1 mutants showed that cell fusion normally restricts routes for cell migration and establishes body and organ shape and size [ 5, 8, 9, 11]. Here, we explored cell fusion by using time-lapse confocal and electron microscopy of different organs. We found that ectopic expression of eff-1 is sufficient to fuse epithelial cells that do not normally fuse. This ectopic fusion results in cytoplasmic content mixing and disappearance of apical junctions, starting less than 50 min after the start of eff-1 transcription. We found that eff-1 is necessary to initiate and expand multiple microfusion events between pharyngeal muscle cells. Surprisingly, eff-1 is not required to fuse the gonadal anchor cell to uterine cells. Thus, eff-1 is sufficient and essential for most but not all cell fusion events during C. elegans development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cub.2004.07.059 | DOI Listing |
J Pathol Transl Med
January 2025
Department of Pathology, Ulsan University Hospital, Ulsan, Korea.
BCOR-rearranged sarcoma was classified by the World Health Organization in 2020 as a new subgroup of undifferentiated small round-cell sarcoma. It is known to occur very rarely in the kidney. This report presents the first case of a primary renal BCOR::CCNB3 sarcoma in a 22-year-old woman.
View Article and Find Full Text PDFAm J Surg Pathol
January 2025
Bioinformatics Core Facility, Lyda Hill Department of Bioinformatics, Department of Pathology University of Texas Southwestern Medical Center, Dallas, TX.
The cholangioblastic variant of intrahepatic cholangiocarcinoma is a distinctive neoplasm that typically affects young women without underlying liver disease. Morphologically, it demonstrates solid, trabecular, and tubulocystic architecture, biphasic small cell-large cell cytology, and immunoreactivity for inhibin, neuroendocrine markers, and biliary but not hepatocellular markers. In 2021, our group identified a characteristic NIPBL::NACC1 gene fusion in cholangioblastic cholangiocarcinoma, and since then ~20 genetically confirmed cases have been reported in the literature.
View Article and Find Full Text PDFDiagn Pathol
January 2025
Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
Background: Perivascular epithelioid cell tumors (PEComas) rarely appear in the head and neck region. This case report describes two transcription factor E3 (TFE3)-rearranged PEComa cases, consisting of one in the orbit and one in the nasal cavity.
Case Presentation: Both cases demonstrated sheet-like or focal nested architecture and comprised epithelioid cells with abundant clear to eosinophilic cytoplasm and vascular stroma.
Commun Biol
January 2025
CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Lyon, France.
We have assessed antiviral activity and induction of protective immunity of fusion-inhibitory lipopeptides derived from the C-terminal heptad-repeat domain of SARS-CoV-2 spike glycoprotein in transgenic mice expressing human ACE2 (K18-hACE2). The lipopeptides block SARS-CoV-2 infection in cell lines and lung-derived organotypic cultures. Intranasal administration in mice allows the maintenance of homeostatic transcriptomic immune profile in lungs, prevents body-weight loss, decreases viral load and shedding, and protects mice from death caused by SARS-CoV-2 variants.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China. Electronic address:
N4-acetylcytidine (ac4C) is a critical RNA modification implicated in cancer progression. Currently, N-acetyltransferase 10 (NAT10) is recognized as the sole "writer" protein responsible for ac4C modification. However, the study of NAT10 and ac4C modification in lung cancer remains sparse.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!