GABAergic interneurons with high-frequency firing, fast-spiking (FS) cells, form synapses on perisomatic regions of principal cells in the neocortex and hippocampus to control the excitability of cortical networks. Brain-derived neurotrophic factor (BDNF) is essential for the differentiation of multiple interneuron subtypes and the formation of their synaptic contacts. Here, we examined whether BDNF, alone or in conjunction with sustained KCl-induced depolarization, drives functional FS cell differentiation and the formation of inhibitory microcircuits. Homogeneous FS cell cultures were established by target-specific isolation using the voltage-gated potassium channel 3.1b subunit as the selection marker. Isolated FS cells expressed parvalbumin, were surrounded by perineuronal nets, formed immature inhibitory connections and generated slow action potentials at 12 days in vitro. Brain-derived neurotrophic factor (BDNF) promoted FS cell differentiation by increasing the somatic diameter, dendritic branching and the frequency of action potential firing. In addition, BDNF treatment led to a significant up-regulation of synaptophysin and vesicular GABA transporter expression, components of the synaptic machinery critical for GABA release, which was paralleled by an increase in synaptic strength. Long-term membrane depolarization alone was detrimental to dendritic branching. However, we observed that BDNF and KCl exerted additive effects, as reflected by the significantly accelerated maturation of synaptic contacts and high discharge frequencies, and was required for the formation of reciprocal connections between FS cells. Our results show that BDNF, along with membrane depolarization, is critical for FS cells to establish inhibitory circuitries during corticogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1460-9568.2004.03561.xDOI Listing

Publication Analysis

Top Keywords

brain-derived neurotrophic
12
neurotrophic factor
12
gabaergic interneurons
8
factor bdnf
8
synaptic contacts
8
cell differentiation
8
dendritic branching
8
membrane depolarization
8
bdnf
6
cells
5

Similar Publications

Ashwagandha () is a popular herb in Ayurveda, the traditional medicine system in India. It is known to exert stress-mitigating properties and has been extensively studied for its safety and efficacy in various disorders. This study assessed the effects of Ashwagandha root extract (ARE) on stress in rats.

View Article and Find Full Text PDF

Background/aim: In an aging model established using male Wistar albino rats via the administration of D-galactose (D-gal), the aim of this study was to examine the effects of chelidonic acid (CA) on cognitive function and the levels of glutathione (GSH), malondialdehyde (MDA), total antioxidant status (TAS), and brain-derived neurotrophic factor (BDNF).

Materials And Methods: Thirty-two, three-month-old Wistar albino male rats (n = 8) were divided into four groups, as the control (C) group, CA group (2 mg/kg of CA via oral gavage), D-gal group (150 mg/kg of D-gal, subcutaneously), and D-gal + CA group (150 mg/kg of D-gal and 2 mg/kg of CA). Following overnight fasting, the 10-week trial was concluded with intramuscular injections of anesthetic drugs xylazine (8-10 mg/kg) and ketamine (80-100 mg/kg), and subsequently, the collection of cardiac blood.

View Article and Find Full Text PDF

Insights for the Next Generation of Ketamine for the Treatment of Depressive Disorder.

J Med Chem

January 2025

Department of Pharmaceutical Sciences, College of Health and Human Sciences, North Dakota State University, Fargo, North Dakota 58105, United States.

Treatment-resistant depression responds quickly to ketamine. As an -methyl-d-aspartate receptor (NMDAR) antagonist, ketamine may affect prefrontal cortex (PFC) neurons. Recent investigations reveal that the ()-enantiomer is the most effective and least abuseable antidepressant.

View Article and Find Full Text PDF

Drugs generally used in major depressive disorder are considered inappropriate for the more common milder forms. The efficacy of saffron extracts has been demonstrated in mild to moderate depression and in preclinical models of depression. However, evidence of saffron activity on reduced hedonic responsiveness and motivational anhedonia is limited.

View Article and Find Full Text PDF

Introduction: Substance use disorders, particularly alcohol use disorders, represent a significant public health problem, with adolescents particularly vulnerable to their adverse effects. This study examined the possible anxiolytic and antidepressant effects of biotin, a crucial vitamin for brain function, in attenuating the behavioral and neurobiological changes associated with alcohol withdrawal in adolescent rats.

Materials And Methods: Sixty male Sprague-Dawley rats were exposed to a 20% ethanol solution for 21 days, followed by a 21-day drug-free period to assess long-term behavioral and physiological changes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!