Structural determinants for membrane trafficking and G protein selectivity of a mouse olfactory receptor.

J Neurochem

Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Japan.

Published: September 2004

The G protein-coupled olfactory receptor (OR) superfamily plays a critical role in recognizing a broad range of odorants. Each OR appears to recognize odorants based on similarities in molecular structures such that mOR-EG, a mouse OR, binds eugenol, vanillin, and some other structurally related odorants. Only a few ORs, however, have been characterized functionally due to the difficulties in expressing ORs in heterologous cells. In this report, we demonstrate roles of the N- and C-terminal domains as key elements in the functional expression and signal transducing activity of an OR. Disruption of the N-terminal glycosylation site of the mOR-EG completely impaired its membrane trafficking to the cell surface. Functional expression of the mOR-EG was greatly enhanced by addition of extra N-terminal glycosylation sequences. Addition of a C-terminal epitope-tag or C-terminal truncation significantly reduced the odorant-response activity, although the receptors were properly targeted to the plasma membrane. Analysis of a series of truncated ORs revealed a region in the C-terminus that was crucial for the receptor activity. Replacement of the C-terminal portion of the mOR-EG with that of rhodopsin disrupted the coupling to G(alphas) but not to G(alpha15), demonstrating that the C-terminus is involved in regulating G protein specificity. These results suggest that glycosylation of the N-terminal portion is critical for OR expression and membrane trafficking, while the C-terminal portion plays a role in defining proper conformation, which, in turn, specifies the G protein selectivity of the OR. This information helps clarify the mechanisms that regulate membrane trafficking and G protein interaction of the OR superfamily.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1471-4159.2004.02619.xDOI Listing

Publication Analysis

Top Keywords

membrane trafficking
16
trafficking protein
8
protein selectivity
8
olfactory receptor
8
functional expression
8
n-terminal glycosylation
8
c-terminal portion
8
membrane
5
c-terminal
5
structural determinants
4

Similar Publications

Control of Synaptotagmin-1 Trafficking by SV2A-Mechanism and Consequences for Presynaptic Function and Dysfunction.

J Neurochem

January 2025

Centre for Discovery Brain Sciences, Hugh Robson Building, George Square, University of Edinburgh, Edinburgh, Scotland, UK.

Synaptic vesicle protein 2A (SV2A) is an abundant synaptic vesicle cargo with an as yet unconfirmed role in presynaptic function. It is also heavily implicated in epilepsy, firstly being the target of the leading anti-seizure medication levetiracetam and secondly with loss of function mutations culminating in human disease. A range of potential presynaptic functions have been proposed for SV2A; however its interaction with the calcium sensor for synchronous neurotransmitter release, synaptotagmin-1 (Syt1), has received particular attention over the past decade.

View Article and Find Full Text PDF

Lipid Rafts in Signalling, Diseases, and Infections: What Can Be Learned from Fluorescence Techniques?

Membranes (Basel)

January 2025

Department of Mathematics, Computer Science, Physics and Earth Science, University of Messina, Viale Stagno D'Alcontres 31, 98166 Messina, Italy.

Lipid rafts are dynamic microdomains in the membrane, rich in cholesterol and sphingolipids, that are critical for biological processes like cell signalling, membrane trafficking, and protein organization. Their essential role is claimed in both physiological and pathological conditions, including cancer, neurodegenerative diseases, and viral infections, making them a key area of research. Fluorescence-based approaches, including super-resolution fluorescence microscopy techniques, enable precise analysis of the organization, dynamics, and interactions of these microdomains, thanks also to the innovative design of appropriate fluorescent probes.

View Article and Find Full Text PDF

Non-Canonical, Extralysosomal Activities of Lysosomal Peptidases in Physiological and Pathological Conditions: New Clinical Opportunities for Cancer Therapy.

Cells

January 2025

Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Américo Vespucio 24, 41092 Sevilla, Spain.

Lysosomes are subcellular compartments characterised by an acidic pH, containing an ample variety of acid hydrolases involved in the recycling of biopolymers. Among these hydrolases, lysosomal proteases have merely been considered as end-destination proteases responsible for the digestion of waste proteins, trafficked to the lysosomal compartment through autophagy and endocytosis. However, recent reports have started to unravel specific roles for these proteases in the regulation of initially unexpected biological processes, both under physiological and pathological conditions.

View Article and Find Full Text PDF

Mechanisms of lipid homeostasis in the Coxiella Containing Vacuole.

Biochem Soc Trans

January 2025

Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, U.S.A.

Coxiella burnetii, the causative agent of human Q fever, is an obligate intracellular bacterial pathogen that replicates in a large, membrane-bound vacuole known as the Coxiella Containing Vacuole (CCV). The CCV is a unique, phagolysosome-derived vacuole with a sterol-rich membrane containing host and bacterial proteins. The CCV membrane itself serves as a barrier to protect the bacteria from the host's innate immune response, and the lipid and protein content directly influence both the CCV luminal environment and interactions between the CCV and host trafficking pathways.

View Article and Find Full Text PDF

Sex-specific DNA methylation marks associated with sex-biased risk of recurrence in unprovoked venous thromboembolism.

J Thromb Haemost

January 2025

Dalla Lana School of Public Health, University of Toronto, Toronto, Canada; Office of the Vice-Principal of Research and Innovation, University of Toronto Mississauga, Mississauga, Canada. Electronic address:

Background: Whether to stop oral anticoagulants after a first unprovoked venous thromboembolism (VTE) is challenging, partially due to an intriguingly higher risk of VTE recurrence (rVTE) in men after therapy discontinuation. DNA methylation (DNAm) differences between men and women might underly this sex-biased rVTE risk difference.

Aim: To investigate sex-specific associations between DNAm at cytosine-phosphate-guanine (CpG) sites and rVTE.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!