Receptor for advanced glycation end products (RAGE) has been proposed as a signal transduction receptor to promote neurite outgrowth and cell migration, by its interaction with a neurite outgrowth promoting protein, Amphoterin. Amphoterin has been shown to interact with sulfoglucuronyl carbohydrate (SGC). The developmental expression of RAGE, Amphoterin and SGC was studied in pre-natal and post-natal mouse cerebellum to establish their cellular and subcellular localization and function. The amount of RAGE in the cerebellum increased with age. RAGE was expressed pre-natally in the external germinal layer and post-natally in the plasma membranes of the granule neurons of the external and internal granule cell layers and in Purkinje cells. Immunocytochemical analysis by high magnification confocal microscopy showed that RAGE was co-expressed with Amphoterin and SGC in the cell surfaces of granule neurons. This co-localization of RAGE, Amphoterin, and SGC was confirmed in isolated and cultured granule neurons and in migrating granule neurons in explant cultures. Anti-RAGE antibodies inhibited neurite outgrowth and cell migration in explant and slice cultures, similar to anti-Amphoterin and anti-SGC antibodies shown previously. The results suggest that RAGE could act as a signaling molecule for neurite outgrowth and cell migration by its interaction with Amphoterin and that of Amphoterin with SGC.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1471-4159.2004.02609.xDOI Listing

Publication Analysis

Top Keywords

neurite outgrowth
20
outgrowth cell
16
cell migration
16
amphoterin sgc
16
granule neurons
16
rage amphoterin
12
developmental expression
8
receptor advanced
8
advanced glycation
8
glycation products
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!