Sensitized photooxygenation of the fungicide furalaxyl.

Environ Sci Pollut Res Int

Dipartimento di Chimica Organica e Biochimica, Università degli Studi di Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Via Cinthia, I-80126 Napoli, Italy.

Published: September 2004

Background: The photolysis of pesticides is of high current interest since light is one of the most important abiotic factors which are responsible for the environmental fate of these substances and may induce their conversion into noxious products. The action of light can also be mediated by oxygen and synthetic or naturally occurring substances which act as sensitizers. Our objective in this study was to investigate the photochemical behaviour of the systemic fungicide furalaxyl in the presence of oxygen and various sensitizers, and to compare the toxicity of the main photoproduct(s) to that of the parent compound. Previous reports on the direct photolysis of the pesticide demonstrated a very slow degradation and the only identified photoproducts were N-2,6-xylyl-D,L-alaninare and 2,6-dimethylaniline.

Methods: Solutions of furalaxyl in CH3CN were photooxygenate using a 500W high-pressure mercury lamp (through a Pyrex glass filter, lambda>300 nm) or a 650W halogen lamp or sunlight and the proper sensitizer. When sunlight was used, aqueous solutions were employed. The photodegradation was checked by NMR and/or GC-MS. The photoproducts were spectroscopically evidenced and, when possible, isolated chromatographically. Acute toxicity tests were performed on the rotifer Brachionus calyciflorus, the crustacean cladoceran Daphnia magna and the anostracan Thamnocephalus platyurus, while chronic toxicity tests (sublethal endpoints) comprised a producer, the alga Pseudokirchneriella subcapitata and the crustacean Ceriodaphnia dubia, as a consumer.

Results And Discussion: In the presence of both oxygen and sensitizer, furalaxyl underwent rapid photochemical transformations mainly to N-disubstituted formamide, maleic anhydride and a 2(5H)-furanone derivative. The formation of these products was rationalized in terms of a furan endoperoxide intermediate derived from the reaction of furalaxyl with active dioxygenated species (singlet oxygen, superoxide anion or ground state oxygen). The 2(5H)-furanone exhibited a higher toxicity than the parent compound.

Conclusion: This work reports the first data on the photosensitized oxygenation of furalaxyl with evidence of the high tendency of the pesticide to undergo photodegradation under these conditions leading, among other things, to a 2(5H)-furanone, which is more toxic than the starting furalaxyl towards aquatic organisms.

Recommendations And Outlook: Investigation highlights that the photolytic fate of a pesticide, although quite stable to direct photoreaction due to its low absorption of solar radiation at ground level, can be significantly influenced in the environment by the presence of substances with energy or electron-transfer properties as natural dyes, e.g. chlorophyll, or synthetic pollutants, e.g. polycyclic aromatic hydrocarbons (PAH).

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF02979628DOI Listing

Publication Analysis

Top Keywords

fungicide furalaxyl
8
presence oxygen
8
toxicity tests
8
furalaxyl
7
oxygen
5
sensitized photooxygenation
4
photooxygenation fungicide
4
furalaxyl background
4
background photolysis
4
photolysis pesticides
4

Similar Publications

Research on the enantioselective environmental behavior of chiral pesticides has been a hot spot of environmental chemistry recently. In this study, the acute toxicity and digestion of furalaxyl enantiomers were determined on the aquatic algae Scendesmus obliquus. After exposure for 96 hours, the EC values for (S)-furalaxyl and (R)-furalaxyl were 13.

View Article and Find Full Text PDF

Enantiomerization and stereoselectivity in bioaccumulation of furalaxyl in Tenebrio molitor larvae.

Ecotoxicol Environ Saf

November 2017

Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Furalaxyl is a chiral pesticide and widely used in modern agriculture as racemate mixture. The enantiomerization and enantioselecive bioaccumulation by a single dose of furalaxyl to Tenebrio molitor larvae under laboratory conditions were studied using a high-performance liquid chromatography tandem mass spectroscopy method based on a ChiralPAK IC column. Our results showed that a significant enantiomerization (interconversion between R-enantiomer and S-enantiomer) was observed in Tenebrio molitor larvae under R- or S-furalaxyl exposure.

View Article and Find Full Text PDF

Acylamino acid chiral fungicides on toxiciepigenetics in lambda DNA methylation.

Food Chem Toxicol

November 2017

Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Acylamino acid chiral fungicides (AACFs) are low-toxicity pesticides and considered as non-carcinogenic chemicals to laboratory animals. Though AACFs have potential toxicological effects on mammals by non-genotoxic mechanisms, the toxicoepigenomics of AACFs has not been documented. In this article, we explored toxiciepigenetics of metalaxyl, benalaxyl and furalaxyl through epigenetics research on lambda DNA under different concentration exposure.

View Article and Find Full Text PDF

The enantioselective environmental behavior of the chiral fungicides benalaxy and furalaxyl in agricultural soils in China was studied. Although sorption onto soils was non-enantioselective, the leaching of benalaxy and furalaxyl was enantioselective in soil columns. The concentrations of the S-enantiomers of both fungicides in the leachates were higher than the R-enantiomers.

View Article and Find Full Text PDF

The enantioselectivities of individual enantiomers of furalaxyl in acute toxicity and bioaccumulation in the earthworm (Eisenia foetida) were studied. The acute toxicity was tested by filter paper contact test. After 48 h of exposure, the calculated LC50 values of the R-form, rac-form, and S-form were 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!