Despite considerable theoretical and empirical work on the population genetic effects of mode of development in benthic marine invertebrates, it is unclear what factors generate and maintain interspecific variation in mode of development and few studies have examined such variation in a phylogenetic context. Here I combine data on mode of development with a molecular phylogeny of 72 calyptraeid species to test the following hypotheses about the evolution of mode of development: (1) Is the loss of feeding larvae irreversible? (2) Is there a phylogenetic effect on the evolution of mode of development? (3) Do embryos of direct-developing species lose the structures necessary for larval feeding and swimming and, if so, is the degree of embryonic modification correlated with the genetic distance between species? The results of these analyses suggest that mode of development evolves rapidly and with little phylogenetic inertia. There are three cases of the possible regain of feeding larvae, in all cases from direct development with nurse eggs. It appears that species with planktotrophic, lecithotrophic, or direct development with nurse eggs all have equal evolutionary potential and retain the possibility of subsequent evolution of a different mode of development. However, species with direct development from large yolky eggs appear to be subject to phylogenetic constraints and may not be able to subsequently evolve a different mode of development. Finally, species that have more recently evolved direct development have less highly modified embryos than older direct-developing species. Since species with nurse eggs generally have fewer embryonic modifications than those from large yolky eggs, this embryological difference may be the underlying cause of the difference in evolutionary potential.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.0014-3820.2004.tb01729.x | DOI Listing |
Nano Lett
January 2025
CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China.
Exciton emitters in two-dimensional monolayer transition-metal dichalcogenides (TMDs) provide a boulevard for the emerging optoelectronic field, ranging from miniaturized light-emitting diodes to quantum emitters and optical communications. However, the low quantum efficiency from limited light-matter interactions and harmful substrate effects seriously hinders their applications. In this work, we achieve a ∼438-fold exciton photoluminescence enhancement by constructing a Fabry-Pérot cavity consisting of monolayer WS and a micron-scale hole on the SiO/Si substrate.
View Article and Find Full Text PDFNat Protoc
January 2025
Department Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.
Deep and accurate proteome analysis is crucial for understanding cellular processes and disease mechanisms; however, it is challenging to implement in routine settings. In this protocol, we combine a robust chromatographic platform with a high-performance mass spectrometric setup to enable routine yet in-depth proteome coverage for a broad community. This entails tip-based sample preparation and pre-formed gradients (Evosep One) combined with a trapped ion mobility time-of-flight mass spectrometer (timsTOF, Bruker).
View Article and Find Full Text PDFCommun Biol
January 2025
Shengjing Hospital of China Medical University, Obstetrics and Gynecology Department, NO36. Sanhao Street, Heping district, Shenyang, China.
Circular RNAs (circRNAs) have garnered substantial attention due to their distinctive circular structure and gene regulatory functions, establishing them as a significant class of functional non-coding RNAs in eukaryotes. Studies have demonstrated that circRNAs can interact with RNA-binding proteins (RBPs), which play crucial roles in tumorigenesis, metastasis, and drug response in cancer by influencing gene expression and altering the processes of tumor initiation and progression. This review aims to summarize the recent advances in research on circRNA-protein interactions (CPIs) and discuss the functions and mode of action of CPIs at various stages of gene expression, including transcription, splicing, translation, and post-translational modifications in the context of cancer.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Centre of Advanced Study in Marine Biology, Annamalai University, Parangipettai 608 502, Tamil Nadu, India.
A bio-fabrication approach is a novel way to develop chitosan-stabilized magnesium oxide nanomaterials (cMgO-NMs). The process involves utilizing polymeric chitosan as the reducing and stabilizing agent. The characteristics of the developed cMgO-NMs were determined using various spectroscopical techniques.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China. Electronic address:
As a Group 2B carcinogen, accurate and efficient detection for Fumonisin B1 (FB1) is essential. The emergence of aptamers presents a viable solution to meet this demand. In this study, a truncated aptamer named Apt40 was developed, showcasing remarkable binding affinity to FB1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!