Changes induced by mutations in rhodopsin that are associated with the degenerative visual disease retinitis pigmentosa result in an altered pattern of light absorption according to quantum mechanical simulations and reference experimental works. Eleven single-point mutations associated with retinitis pigmentosa at and in the proximity to the retinal binding pocket of rhodopsin have been modeled in silico and their spectra calculated with the NDOL (Neglect of Differential Overlap accounting L azimuthal quantum number) a priori method. The altered pattern of absorption found would lead to cumulative consequences in energy dissipation with aging. Different energy balances in the case of mutants at the very molecular level, compared to native nonmutated rhodopsin, can cause permanent cellular stress and would play a role in the progression of the retine degenerative process. It could explain the worsening of the pathological condition mostly in adults and suggests the probable beneficial effects of using quenching drugs and protection devices against excess of light in the early stages of life for avoiding or reducing potential damage.

Download full-text PDF

Source
http://dx.doi.org/10.1002/prot.20204DOI Listing

Publication Analysis

Top Keywords

retinitis pigmentosa
12
light absorption
8
altered pattern
8
patterns retinal
4
retinal light
4
absorption retinitis
4
pigmentosa mutants
4
mutants silico
4
silico model
4
model structures
4

Similar Publications

Charles Bonnet syndrome (CBS) is a clinical condition in which patients with visual impairment experience visual hallucinations (VH) in the presence of clear consciousness. It typically occurs in elderly people and confuses clinicians with multiple differential diagnoses due to VH, which can be present in a variety of clinical conditions ranging from psychosis to neurocognitive disorders (eg, neurocognitive disorder with Lewy bodies). In the latter, the concomitant presence of cognitive decline and parkinsonism aids the diagnosis.

View Article and Find Full Text PDF

Background: Age is the principal risk factor for neurodegeneration in both the retina and brain. The retina and brain share many biological properties; thus, insights into retinal aging and degeneration may shed light onto similar processes in the brain. Genetic makeup strongly influences susceptibility to age-related retinal disease.

View Article and Find Full Text PDF

The U4 small nuclear RNA (snRNA) forms a duplex with the U6 snRNA and, together with U5 and ∼30 proteins, is part of the U4/U6.U5 tri-snRNP complex, located at the core of the major spliceosome. Recently, recurrent variants in the U4 RNA, transcribed from the gene, and in at least two other genes were discovered to cause neurodevelopmental disorder.

View Article and Find Full Text PDF

A human induced pluripotent stem cell (hiPSC) line (UCLi025-A) was generated from dermal fibroblast cells from a 42-year-old female donor with polyneuropathy, hearing loss, retinitis pigmentosa and early-onset cataract (PHARC) syndrome carrying a homozygous nonsense variant in ABHD12 c.193C>T, p.(Arg65*).

View Article and Find Full Text PDF

Longitudinal Assessment of Structural and Functional Changes in Rod-cone Dystrophy: A 10-year Follow-up Study.

Ophthalmol Sci

November 2024

Faculty of Medicine, Dentistry and Health Sciences, Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Australia.

Purpose: Emerging clinical trials for inherited retinal disease (IRD) require an understanding of long-term progression. This longitudinal study investigated the genetic diagnosis and change in retinal structure and function over 10 years in rod-cone dystrophies (RCDs).

Design: Longitudinal observational follow-up study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!