Ferrihydrite reduction by Geobacter species is stimulated by secondary bacteria.

Arch Microbiol

Fachbereich Biologie, Universität Konstanz, 78457 Konstanz, Germany.

Published: October 2004

Geobacter species such as G. bremensis, G. pelophilus, and G. sulfurreducens are obligately anaerobic and grow in anoxic, non-reduced medium by fast reduction of soluble ferric citrate. In contrast, insoluble ferrihydrite was either only slowly or not reduced when supplied as electron acceptor in similar growth experiments. Ferrihydrite reduction was stimulated by addition of a reducing agent or by concomitant growth of secondary bacteria that were physiologically and phylogenetically as diverse as Escherichia coli, Lactococcus lactis, or Pseudomonas stutzeri. In control experiments with heat-inactivated Geobacter cells and viable secondary bacteria, no ( E. coli, P. stutzeri) or only little ( L. lactis) ferrihydrite was reduced. Redox indicator dyes showed that growing E. coli, P. stutzeri, or L. lactis cells lowered the redox potential of the medium in a similar way as a reducing agent did. The lowered redox potential was presumably the key factor that stimulated ferrihydrite reduction by all three Geobacter species. The observed differences in anoxic non-reduced medium with ferric citrate versus ferrihydrite as electron acceptor indicated that reduction of these electron acceptors involved different cellular components or different biochemical strategies. Furthermore, it appears that redox-sensitive components are involved, and/or that gene expression of components needed for ferrihydrite reduction is controlled by the redox state.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00203-004-0686-0DOI Listing

Publication Analysis

Top Keywords

ferrihydrite reduction
16
geobacter species
12
secondary bacteria
12
anoxic non-reduced
8
non-reduced medium
8
ferric citrate
8
electron acceptor
8
reducing agent
8
coli stutzeri
8
stutzeri lactis
8

Similar Publications

An obligately anaerobic, spore-forming sulphate-reducing bacterium, strain SB140, was isolated from a long-term continuous enrichment culture that was inoculated with peat soil from an acidic fen. Cells were immotile, slightly curved rods that stained Gram-negative. The optimum temperature for growth was 28 °C.

View Article and Find Full Text PDF

Photoheterotrophic extracellular reduction of ferrihydrite activates diverse intracellular metabolic pathways in Rhodopseudomonas palustris for enhanced antibiotic degradation.

Water Res

January 2025

Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China. Electronic address:

Anoxygenic photosynthetic bacteria (APB) have been frequently detected as a photoautotrophic Fe-carbon cycling drivers in photic and anoxic environment. However, the potential capacity of these bacteria for photoheterotrophic extracellular reduction of iron-containing minerals and their impact on the transformation of organic pollutants remain currently unknown. This study investigated the capacity of R.

View Article and Find Full Text PDF

Influence of calcium carbonate on ferrihydrite bio-transformation and associated arsenic mobilization/redistribution.

Environ Pollut

December 2024

State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.

The sulfate-reducing bacteria (SRB)-induced ferrihydrite transformation is an important cause for arsenic (As) contamination in the aquifer near mining area. Calcium carbonate (CaCO) is widespread and has the potential of regulating As fate directly or indirectly. However, the influence of CaCO on ferrihydrite transformation and the associated As mobilization/redistribution in SRB-containing environments remains unclear.

View Article and Find Full Text PDF

Hydrous ferric arsenate transformation coupled with As, Fe, and S environmental cycling in sulfidic systems under anoxic and circumneutral conditions.

Sci Total Environ

January 2025

Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.

Despite many studies on the environmental cycling of As, Fe, and S, sulfide (S(-II))-induced hydrous ferric arsenate (HFA) transformation remains to be elucidated. Herein, we investigated the anaerobic reaction of HFA with S(-II) at three environmental concentrations (1, 10, and 50 mM) at pH 48. Changes in solid-phase As, Fe, and S speciation were investigated by XRD, FTIR, Raman, XPS, synchrotron XANES, SEM, and TEM.

View Article and Find Full Text PDF

Banded iron formations (BIFs) are chemical sedimentary rocks commonly utilized for exploring the chemistry and redox state of the Precambrian ocean. Despite their significance, many aspects regarding the crystallization pathways of iron oxides in BIFs remain loosely constrained. In this study, we combine magnetic properties characterization with high-resolution optical and electron imaging of finely laminated BIFs from the 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!