Universality in intermediary metabolism.

Proc Natl Acad Sci U S A

Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA.

Published: September 2004

We analyze the stoichiometry, energetics, and reaction concentration dependence of the reductive tricarboxylic acid (rTCA) cycle as a universal and possibly primordial metabolic core. The rTCA reaction sequence is a network-autocatalytic cycle along the relaxation pathway for redox couples in nonequilibrium reducing environments, which provides starting organic compounds for the synthesis of all major classes of biomolecules. The concentration dependence of its reactions suggests it as a precellular bulk process. We propose that rTCA is statistically favored among competing redox relaxation pathways under early-earth conditions and that this feature drove its emergence and also accounts for its evolutionary robustness and universality. The ability to enhance the rate of core reactions creates an energetic basis for selection of subsequent layers of biological complexity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC516543PMC
http://dx.doi.org/10.1073/pnas.0404922101DOI Listing

Publication Analysis

Top Keywords

concentration dependence
8
universality intermediary
4
intermediary metabolism
4
metabolism analyze
4
analyze stoichiometry
4
stoichiometry energetics
4
energetics reaction
4
reaction concentration
4
dependence reductive
4
reductive tricarboxylic
4

Similar Publications

MAPK-CncC Signaling Pathways Regulate the Antitoxic Response to Avermectin-Induced Oxidative Stress in Juvenile Chinese Mitten Crab, .

Environ Sci Technol

January 2025

Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000 Sichuan Province, China.

This study delves into the adverse effects of AVM, emphasizing oxidative stress induction in the Chinese mitten crab, , and the role of the MAPK-CncC signaling pathway in mediating the antioxidative response. Our findings reveal a dose-dependent impairment in growth performance, alongside occurrence of oxidative stress. The activity of CAT and superoxide dismutase increased significantly in all treatments (0.

View Article and Find Full Text PDF

Biomimetic Silk Nanoparticle Manufacture: Calcium Ion-Mediated Assembly.

ACS Biomater Sci Eng

January 2025

Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St., Glasgow G4 0RE,Scotland,U.K.

Silk has emerged as an interesting candidate among protein-based nanocarriers due to its favorable properties, including biocompatibility and a broad spectrum of processing options to tune particle critical quality attributes. The silk protein conformation during storage in the middle silk gland of the silkworm is modulated by various factors, including the most abundant metallic ion, calcium ion (Ca). Here, we report spiking of liquid silk with calcium ions to modulate the silk nanoparticle size.

View Article and Find Full Text PDF

Modular Metabolic Engineering of for Enhanced Production of Ursolic Acid.

J Agric Food Chem

January 2025

State Key Laboratory of Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, China.

Ursolic acid, a plant-derived pentacyclic triterpenoid with anti-inflammatory, antioxidant, and other bioactive properties, holds significant potential for use in nutritional supplements and drug development. However, its extraction from medicinal plants is inefficient due to low yield and dependence on seasonality and geography. Herein, we use modular metabolic engineering to enhance ursolic acid production in by dividing the biosynthetic pathway into five modules.

View Article and Find Full Text PDF

The inhibitory effect of Hypericum japonicum on H9N2 avian influenza virus.

Adv Biotechnol (Singap)

November 2024

State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.

The H9N2 subtype of avian influenza virus (AIV) causes severe immunosuppression and high mortality in view of its frequent co-infection with other pathogens, resulting in significant economic losses in the poultry industry. Current vaccines provide suboptimal immune protection against H9N2 AIV owing to antigenic variations, highlighting the urgent need for safe and effective antiviral drugs for the prevention and treatment of this virus. This study aimed to investigate the inhibitory effects of Hypericum japonicum extract on H9N2 AIV.

View Article and Find Full Text PDF

One strategy for CO mitigation is using photosynthetic microorganisms to sequester CO under high concentrations, such as in flue gases. While elevated CO levels generally promote growth, excessively high levels inhibit growth through uncertain mechanisms. This study investigated the physiology of the cyanobacterium Synechocystis sp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!