Gitelman's syndrome, an autosomal recessive renal tubulopathy caused by loss-of-function mutations in the thiazide-sensitive NaCl co-transporter (NCC) of the distal convoluted tubule (DCT), is characterized by mild renal Na(+) wasting, hypocalciuria, hypomagnesemia, and hypokalemic alkalosis. For gaining further insights into the pathophysiology of Gitelman's syndrome, the impact of NCC ablation on the morphology of the distal tubule, on the distribution and abundance of ion transport proteins along its length, and on renal tubular Na(+) and Ca(2+) handling in a gene-targeted mouse model was studied. NCC-deficient mice had significantly elevated plasma aldosterone levels and exhibited hypocalciuria, hypomagnesemia, and compensated alkalosis. Immunofluorescent detection of distal tubule marker proteins and ultrastructural analysis revealed that the early DCT, which physiologically lacks epithelial Na(+) (ENaC) and Ca(2+) (TRPV5) channels, was virtually absent in NCC-deficient mice. In contrast, the late DCT seemed intact and retained expression of the apical ENaC and TRPV5 as well as basolateral Na(+)-Ca(2+) exchanger. The connecting tubule exhibited a marked epithelial hypertrophy accompanied by an increased apical abundance of ENaC. Ca(2+) reabsorption seemed unaltered in the distal convolution (i.e., the DCT and connecting tubule) as indicated by real-time reverse transcription-PCR, Western blotting, and immunohistochemistry for TRPV5 and Na(+)-Ca(2+) exchanger and micropuncture experiments. The last experiments further indicated that reduced glomerular filtration and enhanced fractional reabsorption of Na(+) and Ca(2+) upstream and of Na(+) downstream of the DCT provide some compensation for the Na(+) transport defect in the DCT and contribute to the hypocalciuria. Thus, loss of NCC leads to major structural remodeling of the renal distal tubule that goes along with marked changes in glomerular and tubular function, which may explain some of the clinical features of Gitelman's syndrome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/01.ASN.0000138234.18569.63 | DOI Listing |
Kidney360
December 2024
Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, the Netherlands.
Background: Epidermal growth factor is expressed in the distal tubule and secreted in urine (uEGF) after cleavage of membrane-bound pro-EGF. Lower uEGF is associated with kidney disease progression. EGF also plays a role in the regulation of serum magnesium and blood pressure, but whether uEGF is associated with these parameters is unknown.
View Article and Find Full Text PDFCompr Physiol
December 2024
Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, USA.
The rare disease Familial Hyperkalemic Hypertension (FHHt) is caused by mutations in the genes encoding Cullin 3 (CUL3), Kelch-Like 3 (KLHL3), and two members of the With-No-Lysine [K] (WNK) kinase family, WNK1 and WNK4. In the kidney, these mutations ultimately cause hyperactivation of NCC along the renal distal convoluted tubule. Hypertension results from increased NaCl retention, and hyperkalemia by impaired K secretion by downstream nephron segments.
View Article and Find Full Text PDFKidney Res Clin Pract
December 2024
Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, Republic of Korea.
Extracellular vesicles (EVs) are nanosized membranous particles released by nearly all cell types, playing a crucial role in mediating cell-to-cell communication. The molecular profile of EVs often reflects that of their originating cells, rendering them valuable for therapeutic and diagnostic purposes. The kidney comprises various cell types, and urinary EVs are predominantly produced from tubular, glomerular, and urinary bladder cells.
View Article and Find Full Text PDFJ Mol Histol
December 2024
Department of Morphology, Federal University of Rio Grande do Norte, Natal, Brazil.
Diabetic nephropathy (DN) is one of the most relevant and prevalent microvascular complications associated with Diabetes Mellitus. In recent years, hyperbaric oxygen therapy (HBO) has been used to mitigate tissue damage caused by hypoxia, thereby attenuating inflammatory processes. This study aimed to explore morphological aspects associated with DN in rats subjected to HBO.
View Article and Find Full Text PDFPresse Med
December 2024
Division of Pathology, Hôpital Maisonneuve-Rosemont, Université de Montréal, Montréal, Canada.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!