Gitelman's syndrome, an autosomal recessive renal tubulopathy caused by loss-of-function mutations in the thiazide-sensitive NaCl co-transporter (NCC) of the distal convoluted tubule (DCT), is characterized by mild renal Na(+) wasting, hypocalciuria, hypomagnesemia, and hypokalemic alkalosis. For gaining further insights into the pathophysiology of Gitelman's syndrome, the impact of NCC ablation on the morphology of the distal tubule, on the distribution and abundance of ion transport proteins along its length, and on renal tubular Na(+) and Ca(2+) handling in a gene-targeted mouse model was studied. NCC-deficient mice had significantly elevated plasma aldosterone levels and exhibited hypocalciuria, hypomagnesemia, and compensated alkalosis. Immunofluorescent detection of distal tubule marker proteins and ultrastructural analysis revealed that the early DCT, which physiologically lacks epithelial Na(+) (ENaC) and Ca(2+) (TRPV5) channels, was virtually absent in NCC-deficient mice. In contrast, the late DCT seemed intact and retained expression of the apical ENaC and TRPV5 as well as basolateral Na(+)-Ca(2+) exchanger. The connecting tubule exhibited a marked epithelial hypertrophy accompanied by an increased apical abundance of ENaC. Ca(2+) reabsorption seemed unaltered in the distal convolution (i.e., the DCT and connecting tubule) as indicated by real-time reverse transcription-PCR, Western blotting, and immunohistochemistry for TRPV5 and Na(+)-Ca(2+) exchanger and micropuncture experiments. The last experiments further indicated that reduced glomerular filtration and enhanced fractional reabsorption of Na(+) and Ca(2+) upstream and of Na(+) downstream of the DCT provide some compensation for the Na(+) transport defect in the DCT and contribute to the hypocalciuria. Thus, loss of NCC leads to major structural remodeling of the renal distal tubule that goes along with marked changes in glomerular and tubular function, which may explain some of the clinical features of Gitelman's syndrome.

Download full-text PDF

Source
http://dx.doi.org/10.1097/01.ASN.0000138234.18569.63DOI Listing

Publication Analysis

Top Keywords

distal tubule
16
gitelman's syndrome
16
na+ ca2+
12
renal distal
8
renal na+
8
ca2+ handling
8
mouse model
8
hypocalciuria hypomagnesemia
8
ncc-deficient mice
8
enac ca2+
8

Similar Publications

Background: Epidermal growth factor is expressed in the distal tubule and secreted in urine (uEGF) after cleavage of membrane-bound pro-EGF. Lower uEGF is associated with kidney disease progression. EGF also plays a role in the regulation of serum magnesium and blood pressure, but whether uEGF is associated with these parameters is unknown.

View Article and Find Full Text PDF

Familial Hyperkalemic Hypertension.

Compr Physiol

December 2024

Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, USA.

The rare disease Familial Hyperkalemic Hypertension (FHHt) is caused by mutations in the genes encoding Cullin 3 (CUL3), Kelch-Like 3 (KLHL3), and two members of the With-No-Lysine [K] (WNK) kinase family, WNK1 and WNK4. In the kidney, these mutations ultimately cause hyperactivation of NCC along the renal distal convoluted tubule. Hypertension results from increased NaCl retention, and hyperkalemia by impaired K secretion by downstream nephron segments.

View Article and Find Full Text PDF

The role of extracellular vesicles in kidney disease progression.

Kidney Res Clin Pract

December 2024

Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, Republic of Korea.

Extracellular vesicles (EVs) are nanosized membranous particles released by nearly all cell types, playing a crucial role in mediating cell-to-cell communication. The molecular profile of EVs often reflects that of their originating cells, rendering them valuable for therapeutic and diagnostic purposes. The kidney comprises various cell types, and urinary EVs are predominantly produced from tubular, glomerular, and urinary bladder cells.

View Article and Find Full Text PDF

Diabetic nephropathy (DN) is one of the most relevant and prevalent microvascular complications associated with Diabetes Mellitus. In recent years, hyperbaric oxygen therapy (HBO) has been used to mitigate tissue damage caused by hypoxia, thereby attenuating inflammatory processes. This study aimed to explore morphological aspects associated with DN in rats subjected to HBO.

View Article and Find Full Text PDF

Kidney disease in multiple myeloma.

Presse Med

December 2024

Division of Pathology, Hôpital Maisonneuve-Rosemont, Université de Montréal, Montréal, Canada.

Article Synopsis
  • * Quick diagnosis and treatment of kidney problems in these patients are crucial, with therapies focusing on hydration, correcting contributing factors, and administering effective anti-myeloma drugs while considering the patient's kidney function and overall health.
  • * Advanced treatments like plasma exchange may improve kidney recovery in severe cases, and newer combinations of medications show promise, with the possibility of kidney transplantation for some patients in the future.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!