Although the forces required to support the body mass are not elevated when moving up an incline, kinematic studies, in vivo tendon and bone studies and kinetic studies suggest there is a shift in forces from the fore- to the hindlimbs in quadrupeds. However, there are no whole-animal kinetic measurements of incline locomotion. Based on previous related research, we hypothesized that there would be a shift in forces to the hindlimb. The present study measured the force produced by the fore- and hindlimbs of horses while trotting over a range of speeds (2.5 to 5 m s(-1)) on both level and up an inclined (10%) surface. On the level, forelimb peak forces increased with trotting speed, but hindlimb peak force remained constant. On the incline, both fore- and hindlimb peak forces increased with speed, but the sum of the peak forces was lower than on the level. On the level, over the range of speeds tested, total force was consistently distributed between the limbs as 57% forelimb and 43% hindlimb, similar to the weight distribution of the horses during static weight tests. On the incline, the force distribution during locomotion shifted to 52% forelimb and 48% hindlimb. Time of contact and duty factor decreased with speed for both limbs. Time of contact was longer for the forelimb than the hindlimb, a finding not previously reported for quadrupeds. Time of contact of both limbs tended to be longer when traveling up the incline than on the level, but duty factor for both limbs was similar under both conditions. Duty factor decreased slightly with increased speed for the hindlimb on the level, and the corresponding small, predicted increase in peak vertical force could not be detected statistically.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jeb.01171 | DOI Listing |
J Exp Zool A Ecol Integr Physiol
January 2025
Department of Biology, University of Akron, Akron, Ohio, USA.
Escape responses are vital for the survival of prey. The high speeds and accelerations needed to evade predators successfully require exerting forces on the environment. Unlike water, terrestrial habitats can vary in ways that constrain the forces applied, requiring animals to adjust their behavior in response to variable conditions.
View Article and Find Full Text PDFVopr Pitan
January 2025
Federal Research Centre of Nutrition, Biotechnology and Food Safety, 109240, Moscow, Russian Federation.
One of the promising sources for creating specialized foods is the biomass of Arthrospira platensis food microalgae. Biomass of A. platensis and its aqueous extracts are used as a source of bioactive compounds, primarily phycocyanins which are protein macromolecules that largely determine the antioxidant, immunomodulatory and anti-inflammatory properties of this cyanobacterium.
View Article and Find Full Text PDFEnviron Sci Process Impacts
January 2025
Wolfson Atmospheric Chemistry Laboratories, University of York, Heslington, York, YO10 5DD, UK.
Hydrogen internal combustion engines offer a near-term decarbonisation pathway for hard to electrify sectors such as non-road mobile machinery (NRMM). However, few hydrogen-specific engines have ever been developed with the twin-goals of maximising low carbon energy efficiency and delivering air quality co-benefits. We present analyses of dynamometer-derived nitrogen oxides (NO) tailpipe emissions from four variants of a ∼55 kW four-cylinder port fuelled injection spark ignition hydrogen internal combustion engine (H2ICE) suitable for a range of uses within the NRMM industry.
View Article and Find Full Text PDFCellulose (Lond)
December 2024
Vehicle Safety Institute, Graz University of Technology, Inffeldgasse 13/6, 8010 Graz, Austria.
This work deals with the strain-rate dependent characterization of paper under uniaxial tension at high strain-rates. Experiments were performed involving a Split Hopkinson bar for high strain-rate testing, comparing the results with conventional quasi-static tests. Tests were conducted in a strain-rate range between 0.
View Article and Find Full Text PDFJ Neuroeng Rehabil
January 2025
Department of Mechanical and Aerospace Engineering, University of Florida, PO Box 116250, Gainesville, FL, 32611, USA.
Background: Motor module (a.k.a.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!