Identification of crucial histidines involved in carbon-nitrogen triple bond synthesis by aldoxime dehydratase.

J Biol Chem

Institute of Applied Biochemistry, and Graduate School of Life and Environmental Sciences, The University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.

Published: November 2004

Aldoxime dehydratase (OxdA), which is a novel heme protein, catalyzes the dehydration of an aldoxime to a nitrile even in the presence of water in the reaction mixture. The combination of site-directed mutagenesis of OxdA (mutation of all conserved histidines in the aldoxime dehydratase superfamily), estimation of the heme contents and specific activities of the mutants, and CD and resonance Raman spectroscopic analyses led to the identification of the proximal and distal histidines in this unique enzyme. The heme contents and CD spectra in the far-UV region of all mutants except for the H299A one were almost identical to those of the wild-type OxdA, whereas the H299A mutant lost the ability of binding heme, demonstrating that His(299) is the proximal histidine. On the other hand, substitution of alanine for His(320) did not affect the overall structure of OxdA but caused loss of its ability of carbon-nitrogen triple bond synthesis and a lower shift of the Fe-C stretching band in the resonance Raman spectrum for the CO-bound form. Furthermore, the pH dependence of the wild-type OxdA closely followed the His protonation curves observed for other proteins. These findings suggest that His(320) is located in the distal heme pocket of OxdA and would donate a proton to the substrate in the aldoxime dehydration mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M407223200DOI Listing

Publication Analysis

Top Keywords

aldoxime dehydratase
12
carbon-nitrogen triple
8
triple bond
8
bond synthesis
8
heme contents
8
resonance raman
8
wild-type oxda
8
oxda
6
aldoxime
5
heme
5

Similar Publications

Article Synopsis
  • The synthesis of nitriles is crucial in organic chemistry, but traditional methods often involve toxic reagents and harsh conditions.
  • Enzymes like aldoxime dehydratases (Oxds) offer safer alternatives, with recent research highlighting their potential and the limited number of Oxds studied in detail.
  • This review discusses the overexpression, purification, and application of Oxds, and evaluates their industrial prospects compared to other nitrile synthesis innovations.
View Article and Find Full Text PDF

Nitriles (R-CN) comprise a broad group of chemicals industrially produced and used in fine chemicals, pharmaceuticals, and bulk applications, polymer chemistry, solvents, etc. Nitriles are important starting materials for producing carboxylic acids, amides, amines, and several other compounds. In addition, some volatile nitriles have been evaluated for their potential as ingredients in fragrance and flavor formulations.

View Article and Find Full Text PDF
Article Synopsis
  • - Nitriles are useful in various applications, such as solvents, building blocks, and flavor components, and their synthesis through aldoxime dehydratase (Oxd) is gaining attention for its efficiency compared to traditional methods.
  • - This study investigates the immobilization of His-tagged Oxds on metal affinity resins, finding that Ni-NTA resin is more effective than Talon resin for enzyme attachment, leading to enhanced synthesis of beneficial compounds like phenylacetonitrile and E-cinnamonitrile for the fragrance industry.
  • - The results indicated that immobilized OxdBr1 enzyme demonstrated excellent recyclability and productivity, achieving 100% conversion and a substantial yield of phenylacetonitrile,
View Article and Find Full Text PDF

Exploration and utilization of novel aldoxime, nitrile, and nitro compounds metabolizing enzymes from plants and arthropods.

Biosci Biotechnol Biochem

January 2024

Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Toyama, Japan.

Aldoxime (R1R2C=NOH) and nitrile (R-C≡N) are nitrogen-containing compounds that are found in species representing all kingdoms of life. The enzymes discovered from the microbial "aldoxime-nitrile" pathway (aldoxime dehydratase, nitrile hydratase, amidase, and nitrilase) have been thoroughly studied because of their industrial importance. Although plants utilize cytochrome P450 monooxygenases to produce aldoxime and nitrile, many biosynthetic pathways are yet to be studied.

View Article and Find Full Text PDF

Enzymatic properties of a non-classical aldoxime dehydratase capable of producing alkyl and arylalkyl nitriles.

Appl Microbiol Biotechnol

December 2023

College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.

Nitriles are of significant interest in the flavor and fragrance industries with potential application in cosmetics due to their higher stability than analogous aldehydes. However, the traditional methods to prepare nitriles need toxic reagents and hash conditions. This work aimed to develop a chemoenzymatic strategy to synthesize nitriles from natural aldehydes with aldoxime as the intermediate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!