Dynamics of the DNA duplex formation studied by single molecule force measurements.

Biophys J

Laboratoire Pierre Aigrain, Ecole Normale Supérieure, Paris, France.

Published: November 2004

DNA is partly denatured in vitro by applying a force that mechanically separates the two strands of the double helix. Sudden reduction of the imposed displacement triggers spontaneous reannealing of the molecule. The corresponding force signals are measured by optical trapping interferometry for backward steps of various amplitudes and base sequence intervals. The measured signals frequently show plateaus of varying duration at discrete values that are dependent on the base sequence. Additional measurements are performed with proteins bound to the double helix. When the opening fork encounters such a protein during mechanical unzipping, force increases until the protein is ejected. This ejection induces fast release of tension and fast unzipping. Comparing our different measurements, we find that both DNA unzipping and the relaxation of tension in DNA are faster than the formation of the double helix.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1304805PMC
http://dx.doi.org/10.1529/biophysj.104.039776DOI Listing

Publication Analysis

Top Keywords

double helix
12
base sequence
8
dynamics dna
4
dna duplex
4
duplex formation
4
formation studied
4
studied single
4
single molecule
4
force
4
molecule force
4

Similar Publications

The MCM motor of the eukaryotic replicative helicase is loaded as a double hexamer onto DNA by the Origin Recognition Complex (ORC), Cdc6, and Cdt1. ATP binding supports formation of the ORC-Cdc6-Cdt1-MCM (OCCM) helicase-recruitment complex where ORC-Cdc6 and one MCM hexamer form two juxtaposed rings around duplex DNA. ATP hydrolysis by MCM completes MCM loading but the mechanism is unknown.

View Article and Find Full Text PDF

Transcriptional activation and coactivator binding by yeast Ino2 and human proto-oncoprotein c-Myc.

Curr Genet

January 2025

Center for Functional Genomics of Microbes, Institut Für Genetik Und Funktionelle Genomforschung, Universität Greifswald, Felix-Hausdorff-Straße 8, 17487, Greifswald, Germany.

Basic helix-loop-helix domains in yeast regulatory proteins Ino2 and Ino4 mediate formation of a heterodimer which binds to and activates expression of phospholipid biosynthetic genes. The human proto-oncoprotein c-Myc (Myc) and its binding partner Max activate genes important for cellular proliferation and contain functional domains structure and position of which strongly resembles Ino2 and Ino4. Since Ino2-Myc and Ino4-Max may be considered as orthologs we performed functional comparisons in yeast.

View Article and Find Full Text PDF

Efficient and Rapid Enrichment of Extracellular Vesicles Using DNA Nanotechnology-Enabled Synthetic Nano-Glue.

Anal Chem

January 2025

The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.

Swift and efficient enrichment and isolation of extracellular vesicles (EVs) are crucial for enhancing precise disease diagnostics and therapeutic strategies, as well as elucidating the complex biological roles of EVs. Conventional methods of isolating EVs are often marred by lengthy and laborious processes. In this study, we introduce an innovative approach to enrich and isolate EVs by leveraging the capabilities of DNA nanotechnology.

View Article and Find Full Text PDF

Chiral alkynyl Au(I) complexes: Enhancing chiroptical amplification of circularly polarized luminescence through supramolecular helices.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

State Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, PR China. Electronic address:

The construction of helical structures through self-assembly and the exploration of their formation mechanisms not only amplify chiroptical properties but also provide profound insights into the structures and functions of natural helices. In this study, we developed a chiral Au(I) system based on BINAP and alkynyl ligands. The modification of the length or number of alkyl chains at the terminal positions of the alkynyl ligands significantly impacted the self-assembly behavior of the complexes.

View Article and Find Full Text PDF

Polyhydroxy starch with abundant hydroxyls and a unique structure enables uniform Zn deposition.

Chem Commun (Camb)

January 2025

Laboratory of Advanced Materials, Aqueous Batteries Center, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China.

Zinc metal is a promising anode material for zinc-ion batteries (ZIBs), but severe side reactions and dendrite formation hinder its commercialization. In this study, starch is introduced into the ZnSO electrolyte for stabilizing the Zn anode. With abundant hydroxyl groups, starch can reconstruct the H-bond system in the electrolyte, suppressing side reactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!