For successful generation of different cell types by asymmetric cell division, cell differentiation should be initiated only after completion of division. Here, we describe a control mechanism by which Caulobacter couples the initiation of a developmental program to the completion of cytokinesis. Genetic evidence indicates that localization of the signaling protein DivK at the flagellated pole prevents premature initiation of development. Photobleaching and FRET experiments show that polar localization of DivK is dynamic with rapid pole-to-pole shuttling of diffusible DivK generated by the localized activities of PleC phosphatase and DivJ kinase at opposite poles. This shuttling is interrupted upon completion of cytokinesis by the segregation of PleC and DivJ to different daughter cells, resulting in disruption of DivK localization at the flagellated pole and subsequent initiation of development in the flagellated progeny. Thus, dynamic polar localization of a diffusible protein provides a control mechanism that monitors cytokinesis to regulate development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cell.2004.08.019DOI Listing

Publication Analysis

Top Keywords

rapid pole-to-pole
8
pole-to-pole shuttling
8
signaling protein
8
control mechanism
8
completion cytokinesis
8
flagellated pole
8
initiation development
8
polar localization
8
cytokinesis
4
cytokinesis monitoring
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!