Background: Human Immunodeficiency Virus (HIV) infection is a dynamic interaction of the pathogen and the host uniquely defined by the preference of the pathogen for a major component of the immune defense of the host. Simple mathematical models of these interactions show that one of the possible outcomes is a chronic infection and much of the modelling work has focused on this state.
Bifurcation: However, the models also predict the existence of a virus-free equilibrium. Which one of the equilibrium states the system selects depends on its parameters. One of these is the net extinction rate of the preferred HIV target, the CD4+ lymphocyte. The theory predicts, somewhat counterintuitively, that above a critical extinction rate, the host could eliminate the virus. The question then is how to increase the extinction rate of lymphocytes over a period of several weeks to several months without affecting other parameters of the system.
Testing The Hypothesis: Proposed here is the use of drainage, or filtration, of the thoracic duct lymph, a well-established surgical technique developed as an alternative for drug immunosuppression for organ transplantation. The performance of clinically tested thoracic duct lymphocyte depletion schemes matches theoretically predicted requirements for HIV elimination.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC516449 | PMC |
http://dx.doi.org/10.1186/1742-4682-1-7 | DOI Listing |
Bull Math Biol
January 2025
Department of Mathematics, Vivekananda College, Kolkata, West Bengal, 700063, India.
The extinction of species is a major threat to the biodiversity. Allee effects are strongly linked to population extinction vulnerability. Emerging ecological evidence from numerous ecosystems reveals that the Allee effect, which is brought on by two or more processes, can work on a single species concurrently.
View Article and Find Full Text PDFJ Anat
January 2025
Department of Biological Sciences, University of Cape Town, Cape Town, Western Cape, South Africa.
The analysis of incremental marks in the enamel, dentine and cementum of extant and extinct species provides important information about the rate and pattern of tooth growth, which permits inferences about key life history traits. Traditionally, such research has mainly focused on primates, while other mammalian groups have remained relatively unexplored. In some cases, this has led to the misidentification of incremental markings and the miscalculation of dental growth parameters in non-primate taxa, which has highlighted the importance of obtaining more reliable comparative frameworks.
View Article and Find Full Text PDFYeast
January 2025
INRAE, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France.
Meiotic recombination is a powerful source of haplotypic diversity, and thus plays an important role in the dynamics of short-term adaptation. However, high-throughput quantitative measurement of recombination parameters is challenging because of the large size of offspring to be genotyped. One of the most efficient approaches for large-scale recombination measurement is to study the segregation of fluorescent markers in gametes.
View Article and Find Full Text PDFEcology
January 2025
Department of Natural Resources and the Environment, Cornell University, Ithaca, New York, USA.
The subject of investigating causation in ecology has been widely discussed in recent years, especially by advocates of a structural causal model (SCM) approach. Some of these advocates have criticized the use of predictive models and model selection for drawing inferences about causation. We argue that the comparison of model-based predictions with observations is a key step in hypothetico-deductive (H-D) science and remains a valid approach for assessing causation.
View Article and Find Full Text PDFChaos
January 2025
School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
Humans and predators occupy dominant positions in ecosystems and are generally believed to play a decisive role in maintaining ecosystem stability, particularly in the context of virus transmission. However, this may not always be the case. By establishing some ecosystem virus transmission models that cover both human perspectives and predators, we have drawn the following conclusions: (1) Controlling vaccination activities from the human perspective can potentially lower the transmission rate and improve herd immunity, thereby indirectly protecting unvaccinated risk groups.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!