Wireless local area network in a prehospital environment.

BMC Med Inform Decis Mak

Health Informatics Program, Department of Health Services Administration School of Health Related Professions, University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA.

Published: August 2004

Background: Wireless local area networks (WLANs) are considered the next generation of clinical data network. They open the possibility for capturing clinical data in a prehospital setting (e.g., a patient's home) using various devices, such as personal digital assistants, laptops, digital electrocardiogram (EKG) machines, and even cellular phones, and transmitting the captured data to a physician or hospital. The transmission rate is crucial to the applicability of the technology in the prehospital setting.

Methods: We created two separate WLANs to simulate a virtual local are network environment such as in a patient's home or an emergency room (ER). The effects of different methods of data transmission, number of clients, and roaming among different access points on the file transfer rate were determined.

Results: The present results suggest that it is feasible to transfer small files such as patient demographics and EKG data from the patient's home to the ER at a reasonable speed. Encryption, user control, and access control were implemented and results discussed.

Conclusions: Implementing a WLAN in a centrally managed and multiple-layer-controlled access control server is the key to ensuring its security and accessibility. Future studies should focus on product capacity, speed, compatibility, interoperability, and security management.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC517505PMC
http://dx.doi.org/10.1186/1472-6947-4-12DOI Listing

Publication Analysis

Top Keywords

wireless local
8
local area
8
clinical data
8
access control
8
data
5
area network
4
network prehospital
4
prehospital environment
4
environment background
4
background wireless
4

Similar Publications

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Department of Bioengineering, University of California, Los Angeles, CA, USA, Los Angeles, CA, USA.

Background: Alzheimer's disease (AD) is characterized by cognitive decline and increased seizure susceptibility due to brain damage and neural disruptions. This study examines the relationship between cognitive deterioration and seizure pathology in hAPP-J20 transgenic Alzheimer's mice, a model known for amyloid plaque deposition and heightened seizure activity.

Method: We observed hAPP-J20 mice aged 8 to 28 weeks using long-term wireless telemetry to assess hippocampal local field potential, sampled at 2 kHz.

View Article and Find Full Text PDF

Space division multiplexing (SDM) with Hermite Gaussian (HG) modes, for instance, can significantly boost the transmission link capacity. However, SDM is not suitable in existing single mode fiber networks, and in long-distance wireless, microwave, THz or optical links, the far-field beam distribution may present a problem. Recently it has been demonstrated, that time domain HG modes can be employed to enhance the link capacity.

View Article and Find Full Text PDF

Background: The working length determination is necessary before root canal shaping, chemical cleaning, disinfection, and obturation in pulpectomy of primary dentition. This study aimed to evaluate the accuracy of Wirele-X and compare it with DentaPort ZX and Woodpex III in primary molar teeth.

Methods: The in vitro study was performed by using 30 extracted primary mandibular molar teeth.

View Article and Find Full Text PDF

Our day-to-day lives have become comfortable and sophisticated with many recent technologies. Likewise, today's world has been enhanced by new innovative technologies. Everyone is moving towards smart cities and smart homes.

View Article and Find Full Text PDF

In-band full-duplex communication has the potential to double the wireless channel capacity. However, how to efficiently transform the full-duplex gain at the physical layer into network throughput improvement is still a challenge, especially in dynamic communication environments. This paper presents a reinforcement learning-based full-duplex (RLFD) medium access control (MAC) protocol for wireless local-area networks (WLANs) with full-duplex access points.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!