Identification of genes responsive to UV-A radiation in human lens epithelial cells using complementary DNA microarrays.

Photochem Photobiol

Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8096, St. Louis, MO 63110, USA.

Published: December 2004

UV-A radiation produces cataract in animals, enhances photoaging of the lens and skin and increases the phototoxicity of drugs. However, the nature of genes that are activated or repressed after cellular exposure to UV-A radiation remains enigmatic. Because lens epithelial cells exposed to UV-A radiation undergo apoptosis 4 h after exposure to the stress, we sought to establish the change in gene expression in cells by UV-A radiation using gene expression profiling using complementary DNA microarrays containing about 12 000 genes. We identified 78 genes abnormally expressed in UV-A-irradiated cells (showing >2.5-fold change at P < 0.05). These genes are implicated in various biological processes, including signal transduction and nucleic acid binding, and genes encoding enzymes. A majority of the genes were downregulated. Our analysis revealed that the expression of genes for the transcription factors ATF-3 and Pilot increased four-fold, whereas the gene for the apoptosis regulator NAPOR-1 decreased five-fold. These changes were confirmed by real-time quantitative reverse transcriptase-polymerase chain reaction. The calpain large polypeptide 3 (CANP3) gene also increased nine-fold after UV-A radiation. In addition, peroxisomal biogenesis factor 7, glucocorticoid receptor-alpha and tumor-associated calcium signal transducer genes decreased three- to eight-fold. Western blot analysis further confirmed the increase in protein expression of ATF-3 and CANP3 and decreased expression of glucocorticoid receptor-alpha in the irradiated cells. Surprisingly, most of these genes had not been previously shown to be modulated by UV-A radiation. Our results show that human lens epithelial cells respond to a single dose of UV-A radiation by enhancing or suppressing functionally similar sets of genes, some of which have opposing functions, around the time at which apoptosis occurs. These studies support the intriguing concept that activation of competing pathways favoring either cell survival or death is a means to coordinate the response of cells to UV-A stress.

Download full-text PDF

Source
http://dx.doi.org/10.1562/2004-02-03-RA-075.1DOI Listing

Publication Analysis

Top Keywords

uv-a radiation
32
lens epithelial
12
epithelial cells
12
genes
10
uv-a
9
radiation
8
radiation human
8
human lens
8
complementary dna
8
dna microarrays
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!