Duodenal mitochondria were isolated from broiler breeder males with high (0.79+/-0.01, n = 9) and low (0.63+/-0.02, n = 9) feed efficiency (FE) to assess relationships of FE with duodenal mitochondrial function and site-specific defects in electron transport. Sequential additions of adenosine diphosphate (ADP) resulted in 1) higher respiratory control ratio (RCR; an index of respiratory chain coupling) in high FE mitochondria provided succinate, and 2) higher ADP to oxygen ratio (ADP:O; an index of oxidative phosphorylation) in low FE mitochondria provided NADH-linked substrates (malate, pyruvate, or both). Basal electron leak, measured as H2O2 production, was greater in low FE mitochondria provided succinate (P = 0.08) or NADH-linked substrates. As H2O2 levels were elevated in low FE compared with high FE mitochondria by complex I (P+/-0.07) and complex II inhibition, the higher basal electron leak in low FE mitochondria was apparently due to site-specific defects in electron transport at complexes I and II. Elevations in H2O2 above basal levels indicated that high FE mitochondria may also exhibit electron transport defects at complexes I and III. Despite an ability to produce adenosine triphosphate (ATP) that was equal or superior to that demonstrated in high FE duodenal mitochondria, low FE mitochondria exhibited a greater inherent degree of electron leak. The results provide insight into the role that duodenal mitochondria play in the phenotypic expression of FE in broilers.

Download full-text PDF

Source
http://dx.doi.org/10.1093/ps/83.8.1394DOI Listing

Publication Analysis

Top Keywords

electron transport
16
duodenal mitochondria
16
low mitochondria
16
site-specific defects
12
defects electron
12
high mitochondria
12
mitochondria provided
12
electron leak
12
mitochondria
11
mitochondrial function
8

Similar Publications

Lattice coherency engineering trigger rapid charge transport at the heterointerface of Te/InO@MXene photocatalysts for boosting photocatalytic hydrogen evolution.

J Colloid Interface Sci

January 2025

College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China; Heilongjiang Provincial Key Laboratory of Catalytic Synthesis for Fine Chemicals, Qiqihar University, Qiqihar 161006, PR China. Electronic address:

The establishment of heterojunctions has been demonstrated as an effective method to improve the efficiency of photocatalytic hydrogen production. Conventional heterojunctions usually have random orientation relationships, and heterointerfaces can hinder photogenerated carrier transport due to larger lattice mismatches, thus reducing the photoelectric conversion efficiency. In this study, a novel Te/InO@MXene lattice coherency heterojunction was prepared by leveraging the identical lattice spacing of InO (222) and Te (021) crystal face.

View Article and Find Full Text PDF

The development of electrode materials for aqueous ammonium-ion supercapacitors (NH-SCs) has garnered significant attention in recent years. Poor intrinsic conductivity, sluggish electron transfer and ion diffusion kinetics, as well as structural degradation of vanadium oxides during the electrochemical process, pose significant challenges for their efficient ammonium-ion storage. In this work, to address the above issues, the core-shell VO·nHO@poly(3,4-ethylenedioxithiophene) composite (denoted as VOH@PEDOT) is designed and prepared by a simple agitation method to boost the ammonium-ion storage of VO·nHO (VOH).

View Article and Find Full Text PDF

Engineering conductive covalent-organic frameworks enable highly sensitive and anti-interference molecularly imprinted electrochemical biosensor.

Biosens Bioelectron

January 2025

Key Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China. Electronic address:

Covalent organic frameworks (COFs) have drawn great interest in electrochemical sensing. However, most are integrated as enrichment units or reaction carriers and are co-modified with metal nanomaterials. Few studies use the single pristine COFs as an electrochemical signal amplifier.

View Article and Find Full Text PDF

Physical vapor deposition is widely used in the fabrication of organic light-emitting diodes and has the potential to adjust the density and orientation through substrate temperature control, which may lead to enhanced electrical performance. However, it is unclear whether this enhanced property is because of the horizontal molecular orientation or the increased density. The effects of the density and orientation on the electrical properties of a potential electron transport material, (3-dibenzo[c,h]acridin-7-yl)phenyl)diphenylphosphine oxide (TPPO-dibenzacridine), were investigated.

View Article and Find Full Text PDF

Mitochondria as a Therapeutic Target: Focusing on Traumatic Brain Injury.

J Integr Neurosci

January 2025

Department of Hepatology, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170 Porto Alegre, Rio Grande do Sul (RS), Brazil.

Mitochondria are organelles of eukaryotic cells delimited by two membranes and cristae that consume oxygen to produce adenosine triphosphate (ATP), and are involved in the synthesis of vital metabolites, calcium homeostasis, and cell death mechanisms. Strikingly, normal mitochondria function as an integration center between multiple conditions that determine neural cell homeostasis, whereas lesions that lead to mitochondrial dysfunction can desynchronize cellular functions, thus contributing to the pathophysiology of traumatic brain injury (TBI). In addition, TBI leads to impaired coupling of the mitochondrial electron transport system with oxidative phosphorylation that provides most of the energy needed to maintain vital functions, ionic homeostasis, and membrane potentials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!