Evaluation of broiler performance when fed Roundup-Ready wheat (event MON 71800), control, and commercial wheat varieties.

Poult Sci

Animal Sciences Group, Nutrition and Food, 8200 AB, Lelystad, The Netherlands.

Published: August 2004

AI Article Synopsis

  • The study assessed the nutritional value of broiler diets containing around 40% wheat from genetically modified (GM) Roundup Ready wheat (MON 71800) compared to a non-GM control (MON 71900) and commercial wheat varieties over a 40-day feeding trial.
  • Measurements included body weight, feed intake, carcass yields, and breast meat composition, with no significant differences found in growth and feed conversion between the diets, except for slight variations in evisceration yield.
  • The findings indicate that the GM wheat (MON 71800) is nutritionally equivalent to non-GM wheat varieties for broiler chickens.

Article Abstract

We evaluated the nutritional value of broiler diets containing approximately 40% wheat grain from Roundup Ready wheat (MON 71800), its similar nontransgenic control (MON 71900), or reference commercial wheat varieties. The feeding trial lasted 40 d, and each treatment consisted of 10 replicates of 1-d-old Ross 308 broilers (5 pens of males and 5 pens of females). Each pen contained 12 birds, and at d 13 birds were randomly removed until 9 birds remained. Body weight and feed intake were measured on pen basis at 40 d. At d 41, four broilers per pen were slaughtered. The carcasses were dissected, and cut-up yields were determined. Dry matter, protein, and fat contents of breast meat were determined. The data were analyzed by an ANOVA procedure. The BW and feed conversion at d 40 averaged 2,450 g and 1.52, respectively. There were no significant treatment x sex interactions, except for evisceration yield with significant differences (P < 0.05) in yield between birds fed 2 commercial wheat varieties. Data for final BW, feed conversion, carcass yield, and breast meat were not statistically different (P < 0.05) between broilers fed MON 71800 or MON 71900 or the population of birds fed commercial wheat varieties, except a lower carcass yield at d 41 for birds fed the nontransgenic control wheat. Thus MON 71800 was nutritionally equivalent to nongenetically modified wheat varieties when fed to broilers.

Download full-text PDF

Source
http://dx.doi.org/10.1093/ps/83.8.1325DOI Listing

Publication Analysis

Top Keywords

wheat varieties
20
mon 71800
16
commercial wheat
16
birds fed
12
wheat
9
wheat mon
8
nontransgenic control
8
mon 71900
8
breast meat
8
feed conversion
8

Similar Publications

Introduction: With the advent of technologies such as deep learning in agriculture, a novel approach to classifying wheat seed varieties has emerged. However, some existing deep learning models encounter challenges, including long processing times, high computational demands, and low classification accuracy when analyzing wheat seed images, which can hinder their ability to meet real-time requirements.

Methods: To address these challenges, we propose a lightweight wheat seed classification model called LWheatNet.

View Article and Find Full Text PDF

The Physicochemical and Rheological Properties of Green Banana Flour-Wheat Flour Bread Substitutions.

Plants (Basel)

January 2025

Faculty of Science, School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Parkville, VIC 3010, Australia.

Functional foods are currently receiving increasing popularity in diet modification. Green bananas contain far more dietary fiber (DF) and resistant starch (RS) than mature bananas. The potential for integrating these vital components into food, such as bread, has expanded.

View Article and Find Full Text PDF

Whole grain flour is considered a part of a healthy diet, especially when produced with pigmented wheat (). However, the specific metabolic pathways and mechanisms by which these metabolites affect the end-use quality of pigmented wheat varieties still need to be better understood. This study examined the relationship between metabolite concentrations and the end-use quality of three wheat varieties: common wheat (CW, JM20), black wheat (BW, HJ1), and green wheat (GW, HZ148).

View Article and Find Full Text PDF

The Genetics and Breeding of Heat Stress Tolerance in Wheat: Advances and Prospects.

Plants (Basel)

January 2025

Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Department of Agronomy, Zhejiang University, Hangzhou 310058, China.

Heat stress is one of the major concerns for wheat production worldwide. Morphological parameters such as germination, leaf area, shoot, and root growth are affected by heat stress, with affected physiological parameters including photosynthesis, respiration, and water relation. Heat stress also leads to the generation of reactive oxygen species that disrupt the membrane systems of thylakoids, chloroplasts, and the plasma membrane.

View Article and Find Full Text PDF

Flavonoids are a large group of secondary metabolites, which are responsible for pigmentation, signaling, protection from unfavorable environmental conditions, and other important functions, as well as providing numerous benefits for human health. Various stages of flavonoid biosynthesis are subject to complex regulation by three groups of transcription regulators-MYC-like bHLH, R2R3-MYB and WDR which form the MBW regulatory complex. We attempt to cover the main aspects of this intriguing regulatory system in plants, as well as to summarize information on their distinctive features in cereals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!