The utility of intrinsic and extant kinetic parameters for simulating the dynamic behavior of a biotreatment system coupled with a distributed, unstructured, balanced microbial growth model were evaluated against the observed response of test reactors to transient loads of synthetic organic compounds (SOCs). Biomass from a completely mixed activated-sludge (CMAS) system was tested in fed-batch reactors, while a sequencing batch reactor (SBR) was tested by measuring SOC concentrations during the fill and react period. Both the CMAS system and the SBR were acclimated to a feed containing biogenic substrates and several SOCs, and the transient loading tests were conducted with biogenic substrates along with one or more SOCs. Extant parameters more closely reflect the steady-state degradative capacity of activated-sludge biomass than intrinsic parameters and, hence, were expected to be better predictors of system performance. However, neither extant nor intrinsic parameters accurately predicted system response and neither parameter set was consistently superior to the other. Factors that may have contributed to the inability of the model to predict system response were identified and discussed. These factors included the role of abiotic processes in SOC removal, disparity in the bases used to evaluate parameter estimates (substrate mineralization) and reactor performance (substrate disappearance), inhibitory substrate interactions under the severe loading conditions of the SBR, changes in the physiological state of the biomass during the transient loading tests, and the presumed correlation between the competent biomass concentration and the influent SOC concentration.

Download full-text PDF

Source
http://dx.doi.org/10.2175/106143004x141816DOI Listing

Publication Analysis

Top Keywords

intrinsic extant
8
extant parameters
8
synthetic organic
8
organic compounds
8
cmas system
8
biogenic substrates
8
substrates socs
8
transient loading
8
loading tests
8
intrinsic parameters
8

Similar Publications

Occupational Contact Dermatitis in Firefighters.

Dermatitis

November 2024

From the Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA.

Occupational contact dermatitis (OCD) emerges as a salient concern within the context of firefighters, a professional cohort routinely exposed to an array of hazardous substances as an intrinsic facet of their occupational responsibilities. This continual skin exposure to a spectrum of allergenic and irritant agents engenders an elevated predisposition to OCD among firefighters. Notably, the ramifications of OCD in the domain of occupational health assume substantial import, contributing significantly to the prevalence of work-related dermatological maladies and consequential productivity decrements.

View Article and Find Full Text PDF

The forage crop Kom. is of high quality, and the biomechanical properties of its plant system are of great significance for the development of harvesting equipment and the comprehensive utilisation of crop resources. However, the extant research on the biomechanical properties of Kom.

View Article and Find Full Text PDF

The Env protein of murine leukemia virus (MLV) is the prototype of a large clade of retroviral fusogens, collectively known as gamma-type Envs. Gamma-type Envs are found in retroviruses and endogenous retroviruses (ERVs) representing a broad range of vertebrate hosts. All gamma-type Envs contain a highly conserved stretch of 26-residues in the transmembrane subunit (TM) comprising two motifs, a putative immunosuppressive domain (ISD) and a CXCC motif.

View Article and Find Full Text PDF

Although species evolve in response to many intrinsic and extrinsic factors, frequently one factor has a dominating influence on a given organ system. In this context, mouthpart shape and function are thought to correlate strongly with dietary niche and this was advocated for decades, e.g.

View Article and Find Full Text PDF

We use synchrotron x-ray tomography of annual growth increments in the dental cementum of mammaliaforms (stem and crown fossil mammals) from three faunas across the Jurassic to map the origin of patterns of mammalian growth patterns, which are intrinsically related to mammalian endothermy. Although all fossils studied exhibited slower growth rates, longer life spans, and delayed sexual maturity relative to comparably sized extant mammals, the earliest crown mammals developed significantly faster growth rates in early life that reduced at sexual maturity, compared to stem mammaliaforms. Estimation of basal metabolic rates (BMRs) suggests that some fossil crown mammals had BMRs approaching the lowest rates of extant mammals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!