AI Article Synopsis

  • Ipratropium bromide significantly lowers normal resting nasal secretion and exercise-induced rhinorrhea compared to a placebo, with p-values indicating strong statistical significance (p < 0.05 and p < 0.01 respectively).
  • The study suggests that ipratropium may be effective for managing nasal secretion issues associated with exercise.
  • A potential non-parasympathetic cause for increased nasal secretion during exercise is also indicated, highlighting the complexity of nasal secretion regulation.

Article Abstract

The present study demonstrates that ipratropium bromide significantly reduces normal resting nasal secretion (p less than 0.05) and also significantly reduces exercise induced rhinorrhoea compared with a placebo (p less than 0.01). It also demonstrates that there may be another non-parasympathetic cause for the increase in nasal secretion with exercise.

Download full-text PDF

Source

Publication Analysis

Top Keywords

nasal secretion
8
parasympathetic system
4
system exercise-induced
4
exercise-induced rhinorrhoea
4
rhinorrhoea study
4
study demonstrates
4
demonstrates ipratropium
4
ipratropium bromide
4
bromide reduces
4
reduces normal
4

Similar Publications

Background: Diagnostics for neurodegenerative diseases lack non-invasive approaches suitable for early-stage biochemical screening and routine examination of neuropathology. Biomarkers of neurodegenerative diseases pass through the brain-nose interface (BNI) and accumulate in nasal secretion. Sample collection from the brain-nose interface presents a compelling prospect as basis for a non-invasive molecular diagnosis of neuropathologies.

View Article and Find Full Text PDF

During nasal polyp (NP) development, activated T cells differentiate into T helper (Th) 1, Th2, and Th17 cells. Additionally, regulatory T cells (Tregs) that have an immune suppressive function are involved in the pathophysiology of chronic rhinosinusitis (CRS) with NP (CRSwNP). Tregs can act as effector cells that produce inflammatory cytokines, such as interleukin (IL)-17A.

View Article and Find Full Text PDF

Establishment of nasal and olfactory epithelium organoids for unveiling mechanism of tissue regeneration and pathogenesis of nasal diseases.

Cell Mol Life Sci

January 2025

ENT Institute, Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.

Organoid is an ideal in vitro model with cellular heterogeneity and genetic stability when passaging. Currently, organoids are exploited as new tools in a variety of preclinical researches and applications for disease modeling, drug screening, host-microbial interactions, and regenerative therapy. Advances have been made in the establishment of nasal and olfactory epithelium organoids that are used to investigate the pathogenesis of smell-related diseases and cellular/molecular mechanism underlying the regeneration of olfactory epithelium.

View Article and Find Full Text PDF

Background: Longitudinal population-based studies have consistently revealed an expedited cognitive decline in the elderly population with type 2 diabetes mellitus (DM2). Additionally, there is a documented increased risk of developing vascular dementia and Alzheimer's disease in individuals with DM2. Conversely, recent research has pointed to metformin (MET), a widely prescribed medication for type 2 diabetes mellitus (T2DM), potentially mitigating age-related cognitive dysfunction (Madhu et al.

View Article and Find Full Text PDF

Whereas the intranasally delivered influenza vaccines used in children affect transmission of influenza virus in the community as well as reducing illness, inactivated influenza vaccines administered by intramuscular injection do not prevent transmission and have a variable, sometimes low rate of vaccine effectiveness. Although mucosally administered vaccines have the potential to induce more protective immune response at the site of viral infection, quantitating such immune responses in large scale clinical trials and developing correlates of protection is challenging. Here we show that by using mathematical models immune responses measured in the blood after delivery of vaccine to the lungs by aerosol can predict immune responses in the respiratory tract in pigs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!