Libet discovered that a substantial duration (> 0.5-1.0 s) of direct electrical stimulation of the surface of the somatosensory cortex at threshold currents is required before human subjects can report that a conscious somatosensory experience had occurred. Using a reaction time method we confirm that a similarly long stimulation duration at threshold currents is required for activation of elementary visual experiences (phosphenes) in human subjects following stimulation of the surface of the striate cortex. However, the reaction times for the subject to respond to the cessation of the visual experience after the end of electrical stimulation could be as brief as 225-242 ms. We also carried out extensive studies in cats under a variety of anesthetic conditions using the same electrodes and parameters of stimulation employed in the human studies to study the patterns of neuronal activity beneath the stimulating surface electrode. Whereas sufficiently strong currents can activate neurons within milliseconds, stimulating currents close to threshold activate sustained neural activity only after at least 350-500 ms. When currents are close to threshold, some neurons are inhibited for several hundreds of millisecond before the balance between inhibition and excitation shifts towards excitation. These results suggest that the prolonged latencies, i.e., latencies beyond 200-250 ms, for the emergence of conscious experience following direct cortical stimulation result from a delay in the sustained activation of underlying cortical neurons at threshold currents rather than being due to any unusually long duration in central processing time. Intracellular records from cortical neurological cells during repetitive electrical stimulation of the surface of the feline striate cortex demonstrate that such stimulation induces a profound depolarizing shift in membrane potential that may persist after each stimulus train. Such a depolarization is evidence that extracellular K+ concentrations have increased during electrical stimulation. Such an increase in extracellular K+ progressively increases cortical excitability until the threshold for sustained activation of cortical neurons is reached and then exceeded. Consequently, the long latency for threshold activation of cortical neurons depends upon a dynamically increasing cortical facilatory process that begins hundreds of milliseconds before there is sustained activation of such neurons. In some cases, this facilatory process must overcome an initial stimulus-induced inhibition before neuronal firing commences.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.concog.2004.06.002 | DOI Listing |
Strahlenther Onkol
January 2025
TUM School of Medicine and Health, Department of Radiation Oncology, Technische Universität München (TUM), Klinikum rechts der Isar, Munich, Germany.
Purpose: Increasing life expectancy and advances in cancer treatment will lead to more patients needing both radiation therapy (RT) and cardiac implantable electronic devices (CIEDs). CIEDs, including pacemakers and defibrillators, are essential for managing cardiac arrhythmias and heart failure. Telemetric monitoring of CIEDs checks battery status, lead function, settings, and diagnostic data, thereby identifying software deviations or damage.
View Article and Find Full Text PDFSmall
January 2025
Guangzhou Institute of Blue Energy, Knowledge City, Huangpu District, Guangzhou, 510555, P. R. China.
Physiological wound healing process can restore the functional and structural integrity of skin, but is often delayed due to external disturbance. The development of methods for promoting the repair process of skin wounds represents a highly desired and challenging goal. Here, a flexible, self-powered, and multifunctional triboelectric nanogenerator (TENG) wound patch (e-patch) is presented for accelerating wound healing through the synergy of electrostimulation and photothermal effect.
View Article and Find Full Text PDFJpn J Compr Rehabil Sci
December 2024
Department of Rehabilitation Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan.
Unlabelled: Yamaguchi A, Kanazawa Y, Hirano S, Aoyagi Y. A Case with Left Hemiplegia after Cerebral Infarction with Improved Walking Ability Through Robot-assisted Gait Training Combined with Neuromuscular Electrical Stimulation for Foot Drop. Jpn J Compr Rehabil Sci 2024; 15: 88-93.
View Article and Find Full Text PDFBMC Anesthesiol
January 2025
Institute of Health and Care Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
Background: High-frequency, high-intensity transcutaneous electrical nerve stimulation (HFHI TENS, i.e. 80 Hz and 40-60 mA) is an effective, fast-acting pain relief modality after elective surgery, offering pain relief within 5 min.
View Article and Find Full Text PDFNat Commun
January 2025
School of Engineering, Brown University, Providence, RI, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!