Aim: To quantify the inhibition of HBV replication by targeted ribonuclease by using real-time fluorescent PCR.

Methods: Targeted ribonuclease was introduced into 2.2.15 cells by liposome-mediated transfection or HIV-TAT mediated protein transduction. Forty-eight hours after the transfection and 24 h after the transduction, supernatants of 2.2.15 cells were collected and HBV DNA in the supernatants was quantified by real-time fluorescent PCR with a commercial kit.

Results: HBV DNA concentrations in the supernatants of 2.2.15 cells transfected or transducted with targeted ribonuclease were 4.9+/-2.4 x 10(8) copies/L and 8.3+/-4.0 x 10(8) copies/L, respectively. Compared with controls, transfection or transduction of targeted ribonuclease reduced HBV DNA concentration in the supernatants of 2.2.15 cells by 90.4% and 90.1%, respectively (P<0.05).

Conclusion: Targeted ribonuclease can inhibit HBV replication in 2.2.15 cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4572124PMC
http://dx.doi.org/10.3748/wjg.v10.i19.2883DOI Listing

Publication Analysis

Top Keywords

targeted ribonuclease
20
2215 cells
16
real-time fluorescent
12
supernatants 2215
12
hbv dna
12
ribonuclease real-time
8
fluorescent pcr
8
transfection transduction
8
108 copies/l
8
targeted
5

Similar Publications

Background: Argonaute2 (Ago2) plays an essential role in RISC-mediated silencing of target mRNAs, which are critical for cellular functions. Argonaute2 Syndrome, also known as Ago2 Syndrome, is a rare neurological disorder recently discovered in humans. It has significant implications for brain development, yet it remains unstudied to date METHOD: To study this effect, we deleted the Ago2 gene in GABAergic (Slc32a1 cre) and Glutamatergic (Slc17a6 cre) mice.

View Article and Find Full Text PDF

Hypomethylating agents (HMAs) such as azacytidine and decitabine are FDA-approved chemotherapy drugs for hematologic malignancy. By inhibiting DNA methyltransferases, HMAs reactivate tumor suppressor genes (TSGs) and endogenous double-stranded RNAs (dsRNAs) that limit tumor growth and trigger apoptosis via viral mimicry. Yet, HMAs show limited effects in many solid tumors despite the strong induction of TSGs and dsRNAs.

View Article and Find Full Text PDF

Relevance of RNA to the therapeutic efficacy of mesenchymal stromal/stem cells extracellular vesicles.

RNA Biol

December 2025

Paracrine Therapeutics Pte. Ltd, Tai Seng Exchange, Singapore, Singapore.

Mesenchymal Stromal/Stem Cells (MSCs) are among the most frequently studied cell types in clinical trials, and their small extracellular vesicles (sEVs) are now being extensively investigated for therapeutic applications. The RNA cargo of MSC-sEVs, particularly miRNAs and mRNAs, is widely believed to be a key therapeutic component of these vesicles. In this review, we critically examine using first principles and peer-reviewed literature, whether MSC- extracellular vesicles (MSC-EVs) can deliver sufficient quantity of functional miRNA or mRNA to target compartments within recipient cells to elicit a pharmacological response.

View Article and Find Full Text PDF

Effects of ALS-associated 5'tiRNA on the transcriptomic and proteomic profile of primary neurons in vitro.

Exp Neurol

December 2024

Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland; FutureNeuro Research Ireland Centre, Royal College of Surgeons in Ireland, Dublin 2, Ireland. Electronic address:

tRNA-derived stress-induced RNAs (tiRNAs) are a new class of small non-coding RNA that have emerged as important regulators of cellular stress responses. tiRNAs are derived from specific tRNA cleavage by the stress-induced ribonuclease angiogenin (ANG). Loss-of-function mutations in the ANG gene are linked to amyotrophic lateral sclerosis (ALS), and elevated levels of specific tiRNAs were recently identified in ALS patient serum samples.

View Article and Find Full Text PDF

Two secretory T2 RNases from a fungal pathogen target distinct insect cell transmembrane proteins to cause cytotoxicity.

Insect Sci

December 2024

Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, China.

Fungal pathogens produce secretory ribonuclease (RNase) T2 proteins during infection, which contribute to fungal virulence via their enzyme functions in degradation of host cell RNA. However, the details of those proteins entering the host cells are unclear. Our previous study demonstrated that the two secretory RNase T2 members, BbRNT2 and BbTrv, produced by the insect fungal pathogen Beauveria bassiana, caused cytotoxic damage to insect cells and contributed to fungal virulence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!