Mts1 (S100A4) is a calcium-binding protein of the EF-hand type, belonging to the S100 family of proteins. The mts1/S100A4 gene was originally isolated from tumor cell lines, and the protein is believed to play an important role in tumor progression. More recently, oligomeric, but not dimeric, forms of Mts1 have been shown to have a neuritogenic effect when added extracellularly to hippocampal neurons. Here we show increased neurite outgrowth in two other cell types, dopaminergic and cerebellar neurons, in response to treatment with Mts1 oligomers. Moreover, we demonstrate that Mts1 acts as a neuroprotectant in primary cerebellar, dopaminergic, and hippocampal neurons induced to undergo cell death. Interestingly, the survival of the cerebellar and hippocampal neurons increased as a result of treatment with Mts1 not only in oligomeric form but also--although to a lesser extent--in dimeric form. The inhibition of death in cerebellar neurons by Mts1 was accompanied by an inhibition of DNA fragmentation, but Mts1 did not affect the activity of caspases-3 and -6. In hippocampal neurons, cell death induced by the amyloid-beta peptide (Abeta(25-35)) was characterized by an increase in caspase-3 and -6 activity, but no DNA fragmentation was observed. As in cerebellar neurons, the induced increase in caspase activity in hippocampal neurons was not affected by Mts1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jnr.20221 | DOI Listing |
Mol Psychiatry
January 2025
Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
Alzheimer's disease (AD) is characterized by memory loss and neuropsychiatric symptoms associated with cerebral amyloid-β (Aβ) and tau pathologies, but whether and how these factors differentially disrupt neural circuits remains unclear. Here, we investigated the vulnerability of memory and emotional circuits to Aβ and tau pathologies in mice expressing mutant human amyloid precursor protein (APP), Tau or both APP/Tau in excitatory neurons. APP/Tau mice develop age- and sex-dependent Aβ and phosphorylated tau pathologies, the latter exacerbated at early stages, in vulnerable brain regions.
View Article and Find Full Text PDFJ Nutr
January 2025
Jean Mayer USDA HNRCA, Tufts University, Boston, MA 02111.
Background: In addition to its important roles in blood coagulation and bone formation, vitamin K (VK) contributes to brain function. Low dietary VK intake, which is common among older adults, is associated with age-related cognitive impairment.
Objective: To elucidate the biological mechanisms underlying VK's effects on cognition, we investigated the effects of low VK (LVK) intake on cognition in C57BL/6 mice.
J Ethnopharmacol
January 2025
Health Medical Center, Hubei Minzu University, Enshi, Hubei, 445000, PR China; Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Disease, Hubei Minzu University, Enshi, Hubei, 445000, PR China. Electronic address:
Ethnopharmacological Relevance: Qiangji Decoction (QJD), a Chinese medicine, is widely used in Traditional Chinese Medicine to treat amnesia and Alzheimer's disease (AD), showing significant anti-AD effects. However, the precise mechanisms behind these effects are not well understood and require more research.
Aim Of The Study: This study aims to elucidate the mechanisms by which QJD ameliorates neuronal damage, synaptic dysfunction, and mitochondrial impairment in AD through the regulation of ROCK2/Drp1-mediated mitochondrial dynamics.
Proc Natl Acad Sci U S A
February 2025
Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218.
The hippocampal dentate gyrus (DG) is thought to orthogonalize inputs from the entorhinal cortex (pattern separation) and relay this information to the CA3 region. In turn, attractor dynamics in CA3 perform a pattern completion or error correction operation before sending its output to CA1. In a mouse model of congenital hypoplasia of the DG, a deficiency in the (Wls) gene, specifically in cells expressing , which targets neuronal progenitors, led to an almost total absence of dentate granule cells and modestly impaired performance in spatial tasks.
View Article and Find Full Text PDFScience
January 2025
Department of Neuroscience, University of California, Berkeley, Berkeley, CA, USA.
The mechanisms by which the brain replays neural activity sequences remain unknown. Recording from large ensembles of hippocampal place cells in freely behaving rats, we observed that replay content is strictly organized over multiple timescales and governed by self-avoidance. After movement cessation, replays avoided the animal's previous path for 3 seconds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!