Susceptibility differences between tissues can be utilized as a new type of contrast in MRI that is different from spin density, T1-, or T2-weighted imaging. Signals from substances with different magnetic susceptibilities compared to their neighboring tissue will become out of phase with these tissues at sufficiently long echo times (TEs). Thus, phase imaging offers a means of enhancing contrast in MRI. Specifically, the phase images themselves can provide excellent contrast between gray matter (GM) and white matter (WM), iron-laden tissues, venous blood vessels, and other tissues with susceptibilities that are different from the background tissue. Also, for the first time, projection phase images are shown to demonstrate tissue (vessel) continuity. In this work, the best approach for combining magnitude and phase images is discussed. The phase images are high-pass-filtered and then transformed to a special phase mask that varies in amplitude between zero and unity. This mask is multiplied a few times into the original magnitude image to create enhanced contrast between tissues with different susceptibilities. For this reason, this method is referred to as susceptibility-weighted imaging (SWI). Mathematical arguments are presented to determine the number of phase mask multiplications that should take place. Examples are given for enhancing GM/WM contrast and water/fat contrast, identifying brain iron, and visualizing veins in the brain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mrm.20198 | DOI Listing |
HardwareX
March 2025
LIGHT Community, Physics Department, Imperial College London SW7 2AZ, UK.
We recently demonstrated polarisation differential phase contrast microscopy () as a robust, low-cost single-shot implementation of (semi)quantitative phase imaging based on differential phase microscopy. utilises a polarisation-sensitive camera to simultaneously acquire four obliquely transilluminated images from which phase images mapping spatial variation of optical path difference can be calculated. microscopy can be implemented on existing or bespoke microscopes and can utilise radiation at a wide range of visible to near infrared wavelengths and so is straightforward to integrate with fluorescence microscopy.
View Article and Find Full Text PDFPhys Imaging Radiat Oncol
January 2025
Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States.
Background And Purpose: Quantitative MRI (qMRI) has been explored for detecting tumor changes during radiation therapy (RT) in head and neck squamous cell cancer (HNSCC). Clinical trials show prolonged survival with PD-1 targeted immune checkpoint inhibition. Hypofractionated radiation regimens are being studied to counteract radioresistant clonogen formation.
View Article and Find Full Text PDFThe high compliance of the urinary bladder during filling is essential for its proper function, enabling it to accommodate significant volumetric increases with minimal rise in transmural pressure. This study aimed to elucidate the physical mechanisms underlying this phenomenon by analyzing the ex vivo filling process in rat from a fully voided state to complete distension, without preconditioning, using three complementary imaging modalities. High-resolution micro-CT at 10.
View Article and Find Full Text PDFFront Oncol
January 2025
Department of Ultrasound Medicine, the First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, China.
Objective: To determine the diagnostic value of ultrasound, multi-phase enhanced computed tomography, and magnetic resonance imaging of small hepatocellular carcinoma.
Methods: Experimental studies on diagnosing small hepatocellular carcinoma in four databases: PubMed, Cochrane Library, Web of Science, and Embase, were comprehensively searched from October 2007 to October 2024. Relevant diagnostic accuracy data were extracted and a Bayesian model that combined direct and indirect evidence was used for analysis.
Nanoscale
January 2025
Physics Centre of Minho and Porto Universities (CF-UM-UP) and LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal.
Poly(vinylidene fluoride) (PVDF) is technologically relevant due to its thermal stability; chemical, mechanical and radiation resistance; transparency; biocompatibility; and ease of processing. Several of those applications are related to its high electroactivity, for which the β-phase of the polymer is its most renowned protagonist. In this context, extensive research has been conducted on the crystallization of PVDF in the β-phase, when processed from melt and from solution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!