Observations of the gravitational microlensing event MOA 2003-BLG-32/OGLE 2003-BLG-219 are presented, for which the peak magnification was over 500, the highest yet reported. Continuous observations around the peak enabled a sensitive search for planets orbiting the lens star. No planets were detected. Planets 1.3 times heavier than Earth were excluded from more than 50% of the projected annular region from approximately 2.3 to 3.6 astronomical units surrounding the lens star, Uranus-mass planets were excluded from 0.9 to 8.7 astronomical units, and planets 1.3 times heavier than Saturn were excluded from 0.2 to 60 astronomical units. These are the largest regions of sensitivity yet achieved in searches for extrasolar planets orbiting any star.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.1100714DOI Listing

Publication Analysis

Top Keywords

astronomical units
12
gravitational microlensing
8
planets orbiting
8
lens star
8
planets times
8
times heavier
8
excluded astronomical
8
planets
6
search low-mass
4
low-mass exoplanets
4

Similar Publications

Article Synopsis
  • The Rank-Ordered Multifractal Analysis (ROMA) is a method used to analyze the scale behaviors and multifractality of solar wind fluctuations by ranking them based on similarities in their mono-fractal characteristics.
  • Two specific case studies illustrate ROMA's application: one involving fast solar wind data from the Ulysses spacecraft and another concerning slow solar wind data from Venus Express, both captured in January 2007.
  • The analysis reveals distinct turbulence patterns in fast solar wind, with persistent fluctuations at smaller scales and anti-persistent behavior at larger scales, while the slow solar wind exhibits a more complex multifractal turbulence with a shift from anti-persistent to persistent values at different scales.
View Article and Find Full Text PDF

Self-Sustaining Living Habitats in Extraterrestrial Environments.

Astrobiology

December 2024

School of Physics and Astronomy, University of Edinburgh, Scotland, UK.

Standard definitions of habitability assume that life requires the presence of planetary gravity wells to stabilize liquid water and regulate surface temperature. Here, the consequences of relaxing this assumption are evaluated. Temperature, pressure, volatile loss, radiation levels, and nutrient availability all appear to be surmountable obstacles to the survival of photosynthetic life in space or on celestial bodies with thin atmospheres.

View Article and Find Full Text PDF

A giant planet transiting a 3-Myr protostar with a misaligned disk.

Nature

November 2024

Department of Physics and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA, USA.

Astronomers have found more than a dozen planets transiting stars that are 10-40 million years old, but younger transiting planets have remained elusive. The lack of such discoveries may be because planets have not fully formed at this age or because our view is blocked by the protoplanetary disk. However, we now know that many outer disks are warped or broken; provided the inner disk is depleted, transiting planets may thus be visible.

View Article and Find Full Text PDF

Evidence suggests that, when compact objects such as black holes and neutron stars form, they may receive a 'natal kick', during which the stellar remnant gains momentum. Observational evidence for neutron star kicks is substantial, yet is limited for black hole natal kicks, and some proposed black hole formation scenarios result in very small kicks. Here we report that the canonical black hole low-mass X-ray binary (LMXB) V404 Cygni is part of a wide hierarchical triple with a tertiary companion at least 3,500 astronomical units (AU) away from the inner binary.

View Article and Find Full Text PDF

The cool brown dwarf Gliese 229 B is a close binary.

Nature

October 2024

European Southern Observatory, Garching, Germany.

Article Synopsis
  • Brown dwarf companions to stars help us understand planet formation processes, but some of them are more massive than expected based on their luminosities and host star ages.
  • Gliese 229 B, previously thought to be a single entity, was revealed through observations to actually be two brown dwarfs, Gliese 229 Ba and Bb, with masses of 38.1 and 34.4 Jupiter masses, respectively.
  • This discovery challenges existing theories and raises questions about the formation and occurrence of binary brown dwarfs in close orbits around stars.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!