Endothelial cells lining the vasculature have close cell-cell associations that maintain separation of the blood fluid compartment from surrounding tissues. Permeability is regulated by a variety of growth factors and cytokines and plays a role in numerous physiological and pathological processes. We examined a potential role for the p21-activated kinase (PAK) in the regulation of vascular permeability. In both bovine aortic and human umbilical vein endothelial cells, PAK is phosphorylated on Ser141 during the activation downstream of Rac, and the phosphorylated subfraction translocates to endothelial cell-cell junctions in response to serum, VEGF, bFGF, TNFalpha, histamine, and thrombin. Blocking PAK activation or translocation prevents the increase in permeability across the cell monolayer in response to these factors. Permeability correlates with myosin phosphorylation, formation of actin stress fibers, and the appearance of paracellular pores. Inhibition of myosin phosphorylation blocks the increase in permeability. These data suggest that PAK is a central regulator of endothelial permeability induced by multiple growth factors and cytokines via an effect on cell contractility. PAK may therefore be a suitable drug target for the treatment of pathological conditions where vascular leak is a contributing factor, such as ischemia and inflammation.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M408877200DOI Listing

Publication Analysis

Top Keywords

p21-activated kinase
8
endothelial permeability
8
endothelial cells
8
growth factors
8
factors cytokines
8
increase permeability
8
myosin phosphorylation
8
permeability
7
endothelial
5
pak
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!