A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Targeting the neurotoxic species in Alzheimer's disease: inhibitors of Abeta oligomerization. | LitMetric

Targeting the neurotoxic species in Alzheimer's disease: inhibitors of Abeta oligomerization.

FASEB J

Departamento de Bioquímica Médica, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil.

Published: September 2004

In the past two decades, a large body of evidence has established a causative role for the beta-amyloid peptide (Abeta) in Alzheimer's disease (AD). However, recent debate has focused on whether amyloid fibrils or soluble oligomers of Abeta are the main neurotoxic species that contribute to neurodegeneration and dementia. Considerable early evidence has indicated that amyloid fibrils are toxic, but some recent studies support the notion that Abeta oligomers are the primary neurotoxins. While this crucial aspect of AD pathogenesis remains controversial, effective therapeutic strategies should ideally target both oligomeric and fibrillar species of Abeta. Here, we describe the anti-amyloidogenic and neuroprotective actions of some di- and tri-substituted aromatic compounds. Inhibition of the formation of soluble Abeta oligomers was monitored using a specific antibody-based assay that discriminates between Abeta oligomers and monomers. Thioflavin T and electron microscopy were used to screen for inhibitors of fibril formation. Taken together, these results led to the identification of compounds that more effectively block Abeta oligomerization than fibrillization. It is significant that such compounds completely blocked the neurotoxicity of Abeta to rat hippocampal neurons in culture. These findings provide a basis for the development of novel small molecule Abeta inhibitors with potential applications in AD.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.04-1764comDOI Listing

Publication Analysis

Top Keywords

abeta oligomers
12
abeta
10
neurotoxic species
8
alzheimer's disease
8
abeta oligomerization
8
amyloid fibrils
8
targeting neurotoxic
4
species alzheimer's
4
disease inhibitors
4
inhibitors abeta
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!