New electronic spectra of the HCCl and DCCl A-X vibronic bands.

J Chem Phys

Department of Chemistry, National Central University, Chung-Li 32054, Taiwan.

Published: September 2004

The dispersed fluorescence spectra following the excitation of several A<--X vibronic bands of HCCl and DCCl at visible wavelengths were successfully acquired in a discharge supersonic free jet expansion using an intensified charge-coupled device detector. The dispersed fluorescence spectra reveal more details of the X(1) A(') state vibrational structure in these molecules than previous reports. Dispersed fluorescence spectra of all four isotopomers (HC(35)Cl, HC(37)Cl, DC(35)Cl, and DC(37)Cl) were obtained. These dispersed fluorescence spectra exhibit the vibrational structures up to approximately 6000 cm(-1) above the zero-point level and determine the vibrational structures of HC(37)Cl and DC(37)Cl. Complete vibrational parameters including fundamental frequencies, anharmonicities, and coupling constants were determined for the HCCl/DCCl X(1) A(') state. Furthermore, perturbations from the background triplet state a(3) A(") and emission to triplet state levels were observed in the spectra. The singlet-triplet energy gap from the zero-point level could be determined to be 2167 cm(-1) (6.20+/-0.05 kcal/mol) in HCCl and to be 2187 cm(-1) (6.25+/-0.05 kcal/mol) in DCCl. Additionally, some of the A<--X excitation spectrum are reported for HCCl and DCCl.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.1779572DOI Listing

Publication Analysis

Top Keywords

electronic spectra
4
spectra hccl
4
hccl dccl
4
dccl a-x
4
a-x vibronic
4
vibronic bands
4
bands dispersed
4
dispersed fluorescence
4
fluorescence spectra
4
spectra excitation
4

Similar Publications

Symmetry Breaking of FeN4 Moiety via Edge Defects for Acidic Oxygen Reduction Reaction.

Angew Chem Int Ed Engl

January 2025

University of Science and Technology of China, National Synchrotron Radiation Laboratory, 42#, South Road of HeZuoHua, 230029, Hefei, CHINA.

Fe-N-C catalysts, with a planar D4h symmetric FeN4 structure, show promising as noble metal-free oxygen reduction reaction catalysts. Nonetheless, the highly symmetric structure restricts the effective manipulation of its geometric and electronic structures, impeding further enhancements in oxygen reduction reaction performance. Here, a high proportion of asymmetric edge-carbon was successfully introduced into Fe-N-C catalysts through morphology engineering, enabling the precise modulation of the FeN4 active site.

View Article and Find Full Text PDF

Two-dimensional anion-rich NaCl crystal under ambient conditions.

Nat Commun

January 2025

School of Physical Science and Technology, Ningbo University, Ningbo, China.

The two-dimensional (2D) "sandwich" structure composed of a cation plane located between two anion planes, such as anion-rich CrI, VS, VSe, and MnSe, possesses exotic magnetic and electronic structural properties and is expected to be a typical base for next-generation microelectronic, magnetic, and spintronic devices. However, only a few 2D anion-rich "sandwich" materials have been experimentally discovered and fabricated, as they are vastly limited by their conventional stoichiometric ratios and structural stability under ambient conditions. Here, we report a 2D anion-rich NaCl crystal with sandwiched structure confined within graphene oxide membranes with positive surface potential.

View Article and Find Full Text PDF

In conventional nondispersive infrared (NDIR) gas sensors, a wide-spectrum IR source or detector must be combined with a narrowband filter to eliminate the interference of nontarget gases. Therefore, the multiplexed NDIR gas sensor requires multiple pairs of narrowband filters, which is not conducive to miniaturization and integration. Although plasmonic metamaterials or multilayer thin-film structures are widely applied in spectral absorption filters, realizing high-performance, large-area, multiband, and compact filters is rather challenging.

View Article and Find Full Text PDF

Toxic acetone gas emissions and leakage are a potential threat to the environment and human health. Gas sensors founded on metal oxide semiconductors (MOS) have become an effective strategy for toxic gas detection with their mature process. In the present work, an efficient acetone gas sensor based on Au-modified ZnO porous nanofoam (Au/ZnO) is synthesized by polyvinylpyrrolidone-blowing followed by a calcination method.

View Article and Find Full Text PDF

In this study, we synthesized perovskite BaSrSnO ceramics with a unique thorn-like microstructure using the solid-state reaction method. The structural and complex dielectric properties were investigated in detail. X-ray diffraction was employed to characterize the phase purity, while X-ray photoelectron spectroscopy was used to analyze the chemical state of the components.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!