An examination of organic extracts of four new species of South African latrunculid sponges, Tsitsikamma pedunculata, T. favus, Latrunculia bellae, and Strongylodesma algoaensis, yielded 13 known and eight new pyrroloiminoquinone alkaloids, 3-dihydro-7,8-dehydrodiscorhabdin C (4), 14-bromo-3-dihydro-7,8-dehydrodiscorhabdin C (5), discorhabdin V (6), 14-bromo-1-hydroxydiscorhabdin V (7), tsitsikammamine A N-18 oxime (10), tsitsikammamine B N-18 oxime (11), 1-methoxydiscorhabdin D (12), and 1-aminodiscorhabdin D (13). Standard spectroscopic methods provided the structures of the pyrroloiminoquinone metabolites, while chiral GC-MS analysis of the acylated ozonolysis products of 21 confirmed the stereochemistry of the l-histidine residue in this compound. The anticancer activity of 20 pyrroloiminoquinone compounds was explored in the HCT-116 cancer cell line screen, and the DNA intercalation of the tsitsikammamines, together with their ability to cleave DNA through topoisomerase I inhibition, is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/np034084bDOI Listing

Publication Analysis

Top Keywords

species south
8
south african
8
african latrunculid
8
latrunculid sponges
8
tsitsikammamine n-18
8
n-18 oxime
8
cytotoxic pyrroloiminoquinones
4
pyrroloiminoquinones species
4
sponges examination
4
examination organic
4

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

ADEL Institute of Science & Technology (AIST), ADEL, Inc., Seoul, Korea, Republic of (South).

Background: The spatiotemporal pattern of the spread of pathologically modified tau through brain regions in Alzheimer's disease (AD) can be explained by prion-like cell-to-cell seeding and propagation of misfolded tau aggregates. Hence, to develop targeted therapeutic antibodies, it is important to identify the seeding- and propagation-competent tau species. The hexapeptide VQIINK of tau is a critical region for tau aggregation, and K280 is acetylated in various tauopathies including AD.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

ADEL Institute of Science & Technology (AIST), ADEL, Inc., Seoul, Korea, Republic of (South).

Background: Abnormal aggregation and accumulation of tau is a hallmark of tauopathy including Alzheimer's disease. Effective targeting of tau for therapeutic purposes requires a clear understanding of its epitope landscape with identification of a key pathogenic tau species. Despite numerous proposed and tested tau epitopes, ranging from the N-terminus to the microtubule-binding region and C-terminus, the most effective target remains elusive.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Gachon University, Seongnam, Gyeonggido, Korea, Republic of (South).

Background: Anethum graveolans commonly known as Dill is an herb from celery family displaying anti-oxidant benefits. The present study focused on the potential of Anethum graveolans as a multifunctional curative remedy for AD treatment.

Method: Hexane (H) and ethyl acetate (EA) extracts of Dill were prepared and subjected to GC-MS for identification of important bioactive components.

View Article and Find Full Text PDF

Comprehensive Approach for Sequential MALDI-MSI Analysis of Lipids, -Glycans, and Peptides in Fresh-Frozen Rodent Brain Tissues.

Anal Chem

January 2025

Department of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science for Life Laboratory, Uppsala University, SE-75124 Uppsala ,Sweden.

Multiomics analysis of single tissue sections using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) provides comprehensive molecular insights. However, optimizing tissue sample preparation for MALDI-MSI to achieve high sensitivity and reproducibility for various biomolecules, such as lipids, -glycans, and tryptic peptides, presents a significant challenge. This study introduces a robust and reproducible protocol for the comprehensive sequential analysis of the latter molecules using MALDI-MSI in fresh-frozen rodent brain tissue samples.

View Article and Find Full Text PDF

Species' future distributions are commonly predicted using models that link the likelihood of occurrence of individuals to the environment. Although animals' movements are influenced by physical and non-physical landscapes, for example related to individual experiences such as space familiarity or previous encounters with conspecifics, species distribution models developed from observations of unknown individuals cannot integrate these latter variables, turning them into 'invisible landscapes'. In this theoretical study, we address how overlooking 'invisible landscapes' impacts the estimation of habitat selection and thereby the projection of future distributions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!