A locus for circadian period of locomotor activity on mouse proximal chromosome 3.

Chronobiol Int

Program in Medical Neurobiology, Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.

Published: May 2004

Lengthened circadian period of locomotor activity is a characteristic of a congenic strain of mice carrying a nonsense mutation in exon 5 of the carbonic anhydrase II gene, car2. The null mutation in car2 is located on a DBA/2J inbred strain insert on proximal chromosome 3, on an otherwise C57BL/6J genomic background. Since reducing the size of the congenic region would narrow the possible candidate genes for period, two recombinant congenic strains (R1 and R2) were developed from the original congenic strain. These new congenic strains were assessed for period, genetic composition, and the presence of immunoreactive carbonic anhydrase II. R1 mice were homozygous DBA/2J for the distal portion of the original DBA/2J insert, while R2 mice were homozygous DBA/2J for the proximal portion. R1 mice had a significantly lengthened period compared to R2 mice and wild-type C57BL/6J mice, indicating that the gene(s) affecting period is likely found within the reduced DBA/2J insert (approximately 1 cM) in the R1 mice. The R1 mice also possessed the null mutation in car2. This study confirmed the presence of a gene(s) affecting period on proximal chromosome 3 and significantly reduced the size of the congenic region and the number of candidate genes. Future studies will focus on identifying the gene influencing period.

Download full-text PDF

Source
http://dx.doi.org/10.1081/cbi-120038596DOI Listing

Publication Analysis

Top Keywords

proximal chromosome
12
genes period
12
period
8
circadian period
8
period locomotor
8
locomotor activity
8
congenic strain
8
mice
8
carbonic anhydrase
8
null mutation
8

Similar Publications

Facioscapulohumeral muscular dystrophy type 1 (FSHD1) and Becker muscular dystrophy (BMD) are distinct disorders caused by different genetic variations and exhibiting different inheritance patterns. The co-occurrence of both conditions within the same family is rare. In this case report, the proband was a 10 year-old boy who presented with eye and mouth orbicular muscles, shoulder and proximal upper and lower limbs weakness.

View Article and Find Full Text PDF

LEDGF/p75 promotes transcriptional pausing through preventing SPT5 phosphorylation.

Sci Adv

January 2025

Department of Hematology, Zhongda Hospital, Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China.

SPT5 exhibits versatile functions in RNA Pol II promoter proximal pausing, pause release, and elongation in metazoans. However, the mechanism underlying the functional switch of SPT5 during early elongation has not been fully understood. Here, we report that the phosphorylation site-rich domain (PRD)/CTR1 and the prion-like domain (PLD)/CTR2, which are situated adjacent to each other within the C-terminal repeat (CTR) in SPT5, play pivotal roles in Pol II pausing and elongation, respectively.

View Article and Find Full Text PDF

ADELLE: A global testing method for trans-eQTL mapping.

PLoS Genet

January 2025

Department of Human Genetics, The University of Chicago, Chicago, Illinois, United States of America.

Understanding the genetic regulatory mechanisms of gene expression is an ongoing challenge. Genetic variants that are associated with expression levels are readily identified when they are proximal to the gene (i.e.

View Article and Find Full Text PDF

Promoter capture Hi-C identifies promoter-related loops and fountain structures in Arabidopsis.

Genome Biol

December 2024

State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.

Background: Promoters serve as key elements in the regulation of gene transcription. In mammals, loop interactions between promoters and enhancers increase the complexity of the promoter-based regulatory networks. However, the identification of enhancer-promoter or promoter-related loops in Arabidopsis remains incomplete.

View Article and Find Full Text PDF

Concatemer-assisted stoichiometry analysis: targeted mass spectrometry for protein quantification.

Life Sci Alliance

March 2025

https://ror.org/0168r3w48 Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, CA, USA

Large multiprotein machines are central to many biological processes. However, stoichiometric determination of protein complex subunits in their native states presents a significant challenge. This study addresses the limitations of current tools in accuracy and precision by introducing concatemer-assisted stoichiometry analysis (CASA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!