It is shown that the primate primary taste cortex represents not only taste but also information about many nontaste properties of oral stimuli. Of 1,122 macaque anterior insular/frontal opercular neurons recorded, 62 (5.5%) responded to oral stimuli. Of the orally responsive neurons, some (53%) represented the viscosity, tested using carboxymethyl-cellulose in the range 1-10,000 cP. Other neurons (8%) responded to fat in the mouth by encoding its texture (as shown similar responses to nonfat oils), and 8% responded to gritty texture. Some neurons (35%) responded to the temperature of the liquid in the mouth. Some neurons responded to capsaicin, and others to fatty acids. Some neurons (56%) had taste responses. Some (50%) of these neurons were unimodal, responding to one of these types of stimulus, and the majority combined responsiveness to these types of stimulus, with 23% responding for example to both taste and temperature. Some neurons respond to taste, texture, and temperature unimodally, but others combine these inputs. None of these orally responsive neurons responded to odor or to the sight of food. These results provide fundamental evidence about the information channels used to represent the taste, texture, and temperature of food in the first cortical area involved in taste in the primate brain. The results are relevant to understanding the physiological and pathophysiological processes related to how the properties of oral stimuli are represented in the brain and thus to the control of food intake and food selection.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jn.00321.2004DOI Listing

Publication Analysis

Top Keywords

oral stimuli
12
neurons responded
12
taste
9
neurons
9
taste cortex
8
properties oral
8
orally responsive
8
responsive neurons
8
types stimulus
8
taste texture
8

Similar Publications

Background: Yes-associated protein (YAP) is a crucial mechanosensor involved in mechanotransduction, but its role in regulating mechanical force-induced bone remodeling during orthodontic tooth movement (OTM) is unclear. This study aims to elucidate the relationship between mechanotransduction and mechanical force-induced alveolar bone remodeling during OTM.

Results: Our study confirms an asynchronous (temporal and spatial sequence) remodeling pattern of the alveolar bone under mechanical force during OTM.

View Article and Find Full Text PDF

Endo 180 participates in collagen remodeling of the periodontal ligament during orthodontic tooth movement.

BMC Oral Health

December 2024

Department of Orthodontics, Central Laboratory, Hospital for Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Peking University School, 22th Zhongguancun South Ave, Beijing, 100081, China.

Background: Orthodontic tooth movement (OTM) relies on the remodeling of periodontal tissues, including the periodontal ligament (PDL) and alveolar bone. Collagen remodeling plays a crucial role during this process, allowing for the necessary changes in the PDL's structure and function. Endo180, an urokinase plasminogen activator receptor-associated protein, is a transmembrane receptor regulated collagen remodeling.

View Article and Find Full Text PDF

Surface enzyme-polymerization endows Janus hydrogel tough adhesion and regenerative repair in penetrating orocutaneous fistulas.

Nat Commun

December 2024

Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.

Penetrating orocutaneous or oropharyngeal fistulas (POFs), severe complications following unsuccessful oral or oropharyngeal reconstruction, remain complex clinical challenges due to lack of supportive tissue, contamination with saliva and chewed food, and dynamic oral environment. Here, we present a Janus hydrogel adhesive (JHA) with asymmetric functions on opposite sides fabricated via a facile surface enzyme-initiated polymerization (SEIP) approach, which self-entraps surface water and blood within an in-situ formed hydrogel layer (RL) to effectively bridge biological tissues with a supporting hydrogel (SL), achieving superior wet-adhesion and seamless wound plugging. The tough SL hydrogel interlocked with RL dissipates energy to withstand external mechanical stimuli from continuous oral motions like chewing and swallowing, thus reducing stress-induced damage.

View Article and Find Full Text PDF

Objective: This study aimed to identify upregulated genes in HPV16-positive cervical cancer cells and investigate the impact of downregulating NAD(P) H:quinone oxidoreductase 1 (NQO1) on the survival of these cells.

Methods: Transcriptomic sequencing (RNA-seq) was utilized to pinpoint upregulated genes and associated cancer-related pathways in HPV16-positive cervical cancer cells, comparing them to HPV-negative cervical cancer cells. NQO1 gene knockdown was performed in HPV16-positive cervical cancer cell lines to assess its effect on cell survival, including parameters such as cell proliferation, migration, invasion, cell cycle progression, apoptosis, and the expression of key proteins in the PI3K/AKT pathway, p53, and RECK.

View Article and Find Full Text PDF

Development of plantaricin RX-8 loaded pectin/4-carboxyphenylboric acid/carboxymethyl chitosan hydrogel microbead: A potential targeted oral delivery system.

Int J Biol Macromol

December 2024

School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China. Electronic address:

Bacteriocin can effectively improve the gut inflammation for their superior antibacterial activity. However, its inherent attributes, such as easily degraded and off-target effect in the gastrointestinal environment, make bacteriocins' efficient oral delivery a great challenge. Herein, a pectin/4-carboxyphenylboric acid/carboxymethyl chitosan (PEC/CPBA/CMCS) hydrogel microbead targeted oral delivery system was innovatively developed for the plantaricin RX-8 protective delivery, precisely targeted inflammatory microenvironment (IME) and sustained released plantaricin RX-8 by pH/ROS dual stimulation response.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!