Unlabelled: Angiotensin II (Ang II) is implicated in atherogenesis by activating inflammatory responses in arterial wall cells. Ang II accelerates the atherosclerotic process in hyperlipidemic apoE-/- mice by recruiting and activating monocytes. Monocyte chemoattractant protein-1 (MCP-1) controls monocyte-mediated inflammation through its receptor, CCR2. The roles of leukocyte-derived CCR2 in the Ang II-induced acceleration of the atherosclerotic process, however, are not known. We hypothesized that deficiency of leukocyte-derived CCR2 suppresses Ang II-induced atherosclerosis.
Methods And Results: A bone marrow transplantation technique (BMT) was used to develop apoE-/- mice with and without deficiency of CCR2 in leukocytes (BMT-apoE-/-CCR2+/+ and BMT-apoE-/-CCR2-/- mice). Compared with BMT-apoE-/-CCR2+/+ mice, Ang II-induced increases in atherosclerosis plaque size and abdominal aortic aneurysm formation were suppressed in BMT-apoE-/-CCR2-/- mice. This suppression was associated with a marked decrease in monocyte-mediated inflammation and inflammatory cytokine expression.
Conclusions: Leukocyte-derived CCR2 is critical in Ang II-induced atherosclerosis and abdominal aneurysm formation. The present data suggest that vascular inflammation mediated by CCR2 in leukocytes is a reasonable target of therapy for treatment of atherosclerosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/01.ATV.0000143384.69170.2d | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!