Decreased baroreflex sensitivity in isoproterenol-treated mice with cardiac hypertrophy.

Auton Neurosci

Laboratory of Transgenes and Cardiovascular Control, Physiological Sciences Graduate Program, Biomedical Center, Federal University of Espirito Santo, Av Marechal Campos 1468, 29042-755 Vitoria, ES, Brazil.

Published: July 2004

The baroreflex has been shown to be impaired in rat models of cardiac hypertrophy. In the present study, we investigated the effects of beta-adrenoceptor-induced cardiac hypertrophy on the baroreflex in mice. Male Swiss Webster mice weighing 20-25 g were treated with the beta-adrenoceptor agonist isoproterenol (IPM; 15 microg/g/day, s.c.) for 7 days or with vehicle (control, CM). After treatment, IPM (n=9) and CM (n=9) were anesthetized with ketamine + xylazine (91.0: 9.1 mg/kg, i.p.) and had their carotid artery and jugular vein cannulated to test the arterial baroreflex. The baroreflex was evaluated by measuring changes in heart rate (HR) in response to acute increases and decreases in mean arterial pressure (MAP) induced by bolus injections of phenylephrine and sodium nitroprusside (1.5-24.0 microg/kg, i.v.) in conscious animals. IPM showed an increased cardiac weight/body weight (1.18 +/- 0.03 mg/g) ratio compared to CM (0.95 +/- 0.03 mg/g, p<0.05), but similar values of resting MAP (108 +/- 4 vs. 111 +/- 2 mm Hg) and HR (606 +/- 25 vs. 629 +/- 26 bpm). Sigmoidal barocurve analysis showed that isoproterenol treatment significantly reduced the following parameters: baroreflex sensitivity (IPM: -4.26 +/- 0.19 vs. CM: -5.92 +/- 0.54 bpm/mm Hg, p<0.05), reflex bradycardia plateau (IPM: 387 +/- 26 vs. CM: 318 +/- 19 bpm, p<0.05) and HR range (IPM: 369 +/- 30 vs. CM: 442 +/- 20 bpm, p<0.05). Linear regression analysis of baroreflex function also showed a diminished reflex bradycardia (CM: -8.92 +/- 0.87 bpm/mm Hg vs. IPM: -4.94 +/- 0.52 bpm/mm Hg, p<0.05), but similar reflex tachycardia (CM: -3.88 +/- 0.45 bpm/mm Hg vs. IPM: -3.52 +/- 0.43 bpm/mm Hg). In conclusion, beta-adrenoceptor-induced cardiac hypertrophy in mice led to impaired sensitivity of the cardiac baroreflex, which could be due to a diminished vagal activity to the heart.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.autneu.2004.07.003DOI Listing

Publication Analysis

Top Keywords

cardiac hypertrophy
12
hypertrophy baroreflex
8
+/- 003
8
003 mg/g
8
decreased baroreflex
4
baroreflex sensitivity
4
sensitivity isoproterenol-treated
4
isoproterenol-treated mice
4
cardiac
4
mice cardiac
4

Similar Publications

Aim: To define the association between severe coronary artery disease and widespread atherosclerosis in younger individuals.

Methods: Individuals aged 1-50 years with sudden cardiac death (SCD) from 2019-23, autopsy-proven to be due to coronary artery disease, were identified using the state-wide EndUCD registry. Presence of extra-coronary atherosclerosis greater than modified American Heart Association class III was assessed in 5 arterial beds (intra-cerebral vessels, aorta, carotid, renal and femoral arteries).

View Article and Find Full Text PDF

Background: Diabetes mellitus is associated with morphological and functional impairment of the heart primarily due to lipid toxicity caused by increased fatty acid metabolism. Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) have been implicated in the metabolism of fatty acids in the liver and skeletal muscles. However, their role in the heart in diabetes remains unclear.

View Article and Find Full Text PDF

Syringaldehyde Alleviates Cardiac Hypertrophy Induced by Hyperglycemia in H9c2 Cells Through GLP-1 Receptor Signals.

Pharmaceuticals (Basel)

January 2025

Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung 90741, Taiwan.

Cardiac hypertrophy is a significant complication of diabetes, often triggered by hyperglycemia. Glucagon-like peptide-1 (GLP-1) receptor agonists alleviate cardiac hypertrophy, but their efficacy diminishes under GLP-1 resistance. Syringaldehyde (SA), a natural phenolic compound, may activate GLP-1 receptors and mitigate hypertrophy.

View Article and Find Full Text PDF

Background: Myocardial disease is an important component of the wide field of cardiovascular disease. However, the phenomenon of multiple myocardial diseases in a single patient remains understudied.

Aim: To investigate the prevalence and impact of myocarditis in patients with genetic cardiomyopathies and to evaluate the outcomes of myocarditis treatment in the context of cardiomyopathies.

View Article and Find Full Text PDF

Baicalin Mitigates Cardiac Hypertrophy and Fibrosis by Inhibiting the p85a Subunit of PI3K.

Biomedicines

January 2025

Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.

Heart failure (HF) is a serious public health concern. Baicalin is one of the major active ingredients of a traditional Chinese herbal medicine, Huang Qin, which is used to treat patients with chest pain or cardiac discomfort. However, the underlying mechanism(s) of the cardioprotective effect of baicalin are still not fully understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!