Vibrio vulnificus is a naturally occurring estuarine bacterium often associated with disease such as septicemia in humans following consumption of raw and lightly cooked seafood. In China and neighboring countries, rapid economic growth has encouraged increased consumption of seafood, and dietary habits are changing, with more people eating raw fish. In this study, the prevalence of V. vulnificus was investigated in 48 samples from 11 species of live seafood available from markets in coastal cities of China. The bacterium was detected in four of four razor clam samples, in seven of seven giant tiger prawn samples, and in five of nine mantis shrimp samples. The bacterium was also found in water samples of the prawn aquaria at the markets. The maximum level of V. vulnificus was 3.4 log CFU/g in the razor clam samples and 4.9 log CFU/g in the prawn samples by a direct spreading method. Differential bacterial counts on the prawn body revealed that most of the bacteria were found on the shells (exoskeletons), with very few in the edible muscle. However, dense populations can be found in the intestines. Biochemical tests indicated that the isolates of V. vulnificus were biotype 1 strain, which is pathogenic to humans. These isolates were susceptible to ampicillin, penicillin, kanamycin, streptomycin, and erythromycin. These results suggest that V. vulnificus is a potential health hazard to humans in cities consuming and handling live shellfish, especially giant tiger prawns.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4315/0362-028x-67.8.1617 | DOI Listing |
Nucleic Acids Res
December 2024
National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
For successful infection, the life-threatening pathogen Vibrio vulnificus elaborately regulates the expression of survival and virulence genes using various transcription factors (TFs). In this study, a library of the V. vulnificus mutants carrying specific signature tags in 285 TF genes was constructed and subjected to 16 phenotypic analyses.
View Article and Find Full Text PDFMar Biotechnol (NY)
December 2024
Sanya Tropical Fisheriers Research Institute, Sanya, 572108, Hainan Province, China.
Galectins exhibit a variety of biological functions through interactions with their ligands, including galactose and its derivatives. Tandem-repeat galectins, such as Galectin-8, can act as pattern recognition receptors to aggregate and neutralize bacterial pathogens. In this study, Galectin-8 was identified in Trachinotus ovatus (golden pompano).
View Article and Find Full Text PDFPLoS Pathog
December 2024
Burnett School of Biomedical Sciences, University of Central Florida, Orlando Florida, United States of America.
Climate change is having increasingly profound effects on human health, notably those associated with the occurrence, distribution, and transmission of infectious diseases. The number of disparate ecological parameters and pathogens affected by climate change are vast and expansive. Disentangling the complex relationship between these variables is critical for the development of effective countermeasures against its effects.
View Article and Find Full Text PDFInfect Drug Resist
December 2024
Department of Emergency Medicine, Chiayi Chang Gung Memorial Hospital, Puzih City, Chiayi County, Taiwan.
Background: Recent advancements in artificial intelligence have led to increased adoption of machine learning in disease identification, particularly for challenging diagnoses like necrotizing fasciitis and infections. This shift is driven by the technology's efficiency, objectivity, and accuracy, offering potential solutions to longstanding diagnostic hurdles in clinical practice.
Methods: This investigation incorporated 180 inpatients suffering from soft tissue infections.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!