Molecular radical cations have proven to be difficult to generate from aliphatic peptides under electrospray ionization mass spectrometry (ESI-MS) conditions. For a family of small aliphatic peptides GGX, where X = G, A, P, I, L and V, these cations have been generated by electrospraying a mixture of Cu.2+, 12-crown-4 and GGX in methanol/water. GGX.+ is readily formed from the collision-induced dissociation (CID) of [CuII(12-crown-4)(GGX)].2+. The formation of these aliphatic peptide radical ions from these complexes, in cases where it is not possible from the corresponding complexes involving a series of amine ligands instead of 12-crown-4, is likely due to the second ionization energy of the [CuI(12-crown-4)(GGX)]+ complex being higher than that of the corresponding [CuI(amine)(GGX)]+ complex. Using these 12-crown-4 complexes, GGI can be differentiated from the isomeric GGL by comparing the CID spectra of their [a3 + H].+ ions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/rcm.1551 | DOI Listing |
Sci Rep
January 2025
College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China.
Pugionium cornutum (L.) Gaertn (P. cornutum) has strong tolerance to drought, salt and disease, but the tolerance mechanisms for such stresses in P.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.
Intensified host-guest electronic interplay within stable metal-organic cages (MOCs) presents great opportunities for applications in stimuli response and photocatalysis. Zr-MOCs represent a type of robust discrete hosts for such a design, but their host-guest chemistry in solution is hampered by the limited solubility. Here, by using pyridinium-derived cationic ligands with tetrakis(3,5-bis(trifluoromethyl)phenyl)borate (BAr) as solubilizing counteranions, we report the preparation of soluble Zr-MOCs of different shapes (1-4) that are otherwise inaccessible through a conventional method.
View Article and Find Full Text PDFFood Chem
January 2025
Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China. Electronic address:
Pomegranate seeds, a by-product of pomegranate processing, are gaining attention in food industries due to their high antioxidant activity. However, the lack of quality markers reflecting activity and spatial characteristics limits their utilization and product stability. In this research, a selective and sensitive method integrating ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry with feature-based molecular networking, and desorption electrospray ionization-mass spectrometry imaging developed to identify components and locate in-situ images of quality markers via spatial metabolomics analysis.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China. Electronic address:
With the aid of radical and non-radical reactive species (RS), advanced oxidation processes can efficiently degrade emerging organic contaminants including antibiotics but may generate toxic transformation products (TPs). However, the detoxification capacity of popular RS has not been well elucidated. This study compared the detoxification of enrofloxacin (ENR) with three RS-dominated systems: O, SO+OH, OH.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 611756, China. Electronic address:
Although hydroxyl radicals (OH) degrade organic pollutants nonselectively, their mineralization rate during the treatment of waste leachate biological treatment effluent (BTL) using Fenton or Fenton-like systems is not high, and the reason is unknown. In this study, we investigated three typical Fenton-like systems that act on dissolved organic matter (DOM) in BTL. We analyzed the molecular composition of DOM resistant to OH, using ultrahigh resolution mass spectrometry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!