The beta(2)-adrenergic receptor (beta(2)-AR) and the large-conductance Ca(2+)-activated K(+) (BK(Ca)) channel have been shown, separately, to be involved in mediating uterine relaxation. Our recent studies reveal that the levels of both beta(2)-AR and BK(Ca) channel proteins in pregnant human myometrium decrease by approximately 50% after the onset of labor. We present direct evidence in support of a structural and functional association between the beta(2)-AR and the BK(Ca) channel in pregnant human myometrium. Localization of both proteins is predominantly plasmalemmal, with 60% of beta(2)-AR colocalizing with the BK(Ca) channel. Coimmunoprecipitation studies indicate that BK(Ca) and beta(2)-AR are structurally linked by direct protein-protein interactions. Functional correlation was confirmed by experiments of human myometrial contractility in which the BK(Ca) channel blocker, paxilline, significantly antagonized the relaxant effect of the beta(2)-AR agonist ritodrine. These novel findings provide an insight into the coupling between the beta(2)-AR and BK(Ca) channel and may have utility in the application of this signaling cascade for therapeutic potential in the management of preterm labor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpcell.00236.2004 | DOI Listing |
Nat Commun
January 2025
Department of Molecular Cellular and Developmental Biology, The Ohio State University, Columbus, OH, USA.
Extracellular vesicles (EVs) are associated with intercellular communications, immune responses, viral pathogenicity, cardiovascular diseases, neurological disorders, and cancer progression. EVs deliver proteins, metabolites, and nucleic acids into recipient cells to effectively alter their physiological and biological response. During their transportation from the donor to the recipient cell EVs face differential ionic concentrations, which can be detrimental to their integrity and impact their cargo content.
View Article and Find Full Text PDFContact (Thousand Oaks)
December 2024
Department of Physiology and Membrane Biology, University of California, Davis, CA, USA.
Membrane contact sites (MCSs) are specialized regions where two or more organelle membranes come into close apposition, typically separated by only 10-30 nm, while remaining distinct and unfused. These sites play crucial roles in cellular homeostasis, signaling, and metabolism. This review focuses on ion channels, transporters, and receptors localized to MCSs, with particular emphasis on those associated with the plasma membrane and endoplasmic reticulum (ER).
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Physiology, University of Arizona College of Medicine, Tucson, Arizona, USA.
Introduction: Cerebrovascular dysfunction occurs in Alzheimer's disease (AD), impairing hemodynamic regulation. Large conductance Ca-activated K channels (BK) regulate cerebrovascular reactivity and are impaired in AD. BK activity depends on intracellular Ca (Ca sparks) and nitro-oxidative post-translational modifications.
View Article and Find Full Text PDFBrain Res
December 2024
Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan.
Background: Epilepsy affects nearly 50 million people worldwide. Previous studies have indicated the neuroprotective effects of statin on several neuropathological conditions. However, it is very much unknown whether fluvastatin was able to alter the seizure types related to neuronal excitability and progression mediated by NMDA receptor activation, and the mechanisms involved in these actions are not completely understood so far.
View Article and Find Full Text PDFPeptides
January 2025
School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!