Background: 3-guanidinopropionic acid derivatives reduce body weight in obese, diabetic mice. We have assessed whether one of these analogues, the aminoguanidine carboxylate BVT.12777, opens KATP channels in rat insulinoma cells, by the same mechanism as leptin.

Results: BVT.12777 hyperpolarized CRI-G1 rat insulinoma cells by activation of KATP channels. In contrast, BVT.12777 did not activate heterologously expressed pancreatic beta-cell KATP subunits directly. Although BVT.12777 stimulated phosphorylation of MAPK and STAT3, there was no effect on enzymes downstream of PI3K. Activation of KATP in CRI-G1 cells by BVT.12777 was not dependent on MAPK or PI3K activity. Confocal imaging showed that BVT.12777 induced a re-organization of cellular actin. Furthermore, the activation of KATP by BVT.12777 in CRI-G1 cells was demonstrated to be dependent on actin cytoskeletal dynamics, similar to that observed for leptin.

Conclusions: This study shows that BVT.12777, like leptin, activates KATP channels in insulinoma cells. Unlike leptin, BVT.12777 activates KATP channels in a PI3K-independent manner, but, like leptin, channel activation is dependent on actin cytoskeleton remodelling. Thus, BVT.12777 appears to act as a leptin mimetic, at least with respect to KATP channel activation, and may bypass up-stream signalling components of the leptin pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC516774PMC
http://dx.doi.org/10.1186/1471-2210-4-17DOI Listing

Publication Analysis

Top Keywords

katp channels
16
rat insulinoma
12
insulinoma cells
12
activation katp
12
bvt12777
11
aminoguanidine carboxylate
8
carboxylate bvt12777
8
bvt12777 activates
8
channels rat
8
katp
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!