Genome-wide transcriptional profiling of the Escherichia coli response to a proline-rich antimicrobial peptide.

Antimicrob Agents Chemother

Department of Biomedical Sciences and Technology, University of Udine, P. le Kolbe 4, I-33100 Udine, Italy.

Published: September 2004

Most antimicrobial peptides (AMPs) impair the viability of target bacteria by permeabilizing bacterial membranes. However, the proline-rich AMPs have been shown to kill susceptible organisms without causing significant membrane perturbation and may act by inhibiting the activity of bacterial targets. To gain initial insight into the events that follow interaction of a proline-rich peptide with bacterial cells, we used DNA macroarray technology to monitor transcriptional alterations of Escherichia coli in response to challenge with a subinhibitory concentration of the proline-rich Bac7(1-35). Substantial changes in the expression levels of 70 bacterial genes from various functional categories were detected. Among these, 26 genes showed decreased expression, while 44 genes, including genes that are potentially involved in bacterial resistance to antimicrobials, showed increased expression. The generation of a transcriptional response under the experimental conditions used is consistent with the ability of Bac7(1-35) to interact with bacterial components and affect biological processes in this organism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC514742PMC
http://dx.doi.org/10.1128/AAC.48.9.3260-3267.2004DOI Listing

Publication Analysis

Top Keywords

escherichia coli
8
coli response
8
bacterial
6
genome-wide transcriptional
4
transcriptional profiling
4
profiling escherichia
4
proline-rich
4
response proline-rich
4
proline-rich antimicrobial
4
antimicrobial peptide
4

Similar Publications

Macrolide resistance due to (55).

Microbiol Spectr

January 2025

Institute for Microbial Systems and Society, Faculty of Science, University of Regina, Regina, Saskatchewan, Canada.

Unlabelled: Antimicrobial resistance (AMR) is a global threat. The identification and characterization of novel resistance genes is integral to AMR surveillance. The (55) gene was originally identified through whole genome sequencing of macrolide-resistant strains of .

View Article and Find Full Text PDF

Screening a library of temperature-sensitive mutants to identify secretion factors in .

J Bacteriol

January 2025

Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Chicago, Illinois, USA.

Protein secretion is an essential cell process in bacteria, required for cell envelope biogenesis, export of virulence factors, and acquisition of nutrients, among other important functions. In the Sec secretion pathway, signal peptide-bearing precursors are recognized by the SecA ATPase and pushed across the membrane through a translocon channel made of the proteins SecY, SecE, and SecG. The Sec pathway has been extensively studied in the model organism , but the Sec pathways of other bacteria such as the human pathogen differ in important ways from this model.

View Article and Find Full Text PDF

Plant growth-promoting rhizobacterium Sp7 utilizes fructose efficiently via a fructose phosphotransferase system (Fru-PTS). Its genome encodes two putative Fru-PTS, each consisting of FruB (EIIA), FruK (Pfk), and FruA (EIIBC) proteins. We compared the proteomes of Sp7 grown with malate or fructose as sole carbon source, and noticed upregulation of the constituent proteins of Fru-PTS1 only on fructose.

View Article and Find Full Text PDF

The present study evaluated the performance of a full-scale gravity-driven membrane filtration system with passive hydraulic fouling control (PGDMF) for drinking water treatment in a small community over a 3-year period. The PGDMF system consistently met the design flow and regulated water quality/performance parameters (i.e.

View Article and Find Full Text PDF

This study is aimed at evaluating the quality and safety of two traditional fermented dairy products commonly found in Lebanon (Ambarees and Kishk in its dry and wet forms) by detecting foodborne pathogens and indicator microorganisms. Additionally, it seeks to identify the strengths, weaknesses, opportunities, and threats to quality and the production level. A total of 58 random samples (duplicated) including goat milk ( = 16), dry Kishk ( = 8), wet Kishk ( = 8), and Ambarees ( = 26) were collected from individuals who both farm and process these products.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!