In the present review article, we present the efforts done so far for elucidating the mechanism of adsorption of the Co(II) species, mainly Co(H(2)O)(6)(2+), on the interfacial region developed between metal oxide particles, used as catalytic supports, and aqueous electrolytic solutions. Specifically, we present: (i) the principal modes of deposition of the transition metal ionic species (TMIS) on the surface of oxidic supports related with the various methodologies used for the preparation of the supported catalysts; (ii) the state of the art concerning the general aspects of the adsorption mechanisms of the TMIS on the aforementioned interfacial region; and (iii) the works reported so far dealing with the adsorption of the Co(II) species on the surface of gamma-Al(2)O(3) (gamma-alumina), alpha-Al(2)O(3) (alpha-alumina), TiO(2) (rutile), and SiO(2) (silica). It was concluded that the mechanism of adsorption depends on two main factors: on the Co(II) surface concentration and on the nature of the support surface. It seems that, generally, the mechanism changes progressively along the Co(II) surface concentration from the deposition of monodentate-mononuclear inner sphere complexes, weakly evidenced in too low values of the Co(II) surface concentration, to multidentate, multinuclear inner sphere surface complexes at relatively low Co(II) surface concentrations, and then into surface Co(OH)(2)-like, eventually mixed precipitates, at relatively high Co(II) surface concentrations but at pH values lower than those required for bulk precipitation. In all cases, Co(II) forms surface species with Co(II) in octahedral symmetry. However, the exact Co(II) surface concentration values, in which the abovementioned two transitions (concerning the deposited phase) take place, depends on the kind of the support. Thus, SiO(2) favors the formation of the Co(OH)(2)-like precipitates even at relatively low Co(II) surface concentrations. In contrast, TiO(2) favors the formation of mononuclear or oligonuclear surface complexes. Finally, alumina, which exhibits the maximum adsorption capacity, favors the formation of highly defected Co(OH)(2)-like precipitates, probably mixed Co-Al precipitates. The exact local structure of the inner sphere Co(II) surface complexes, formed by exchanging the H(2)O ligands with surface oxygens, has been already approached but only for the surface planes of the alpha-Al(2)O(3) and rutile monocrystals. This structure remains up to now rather unclear for the polycrystalline oxides used as catalytic supports.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cis.2004.04.001DOI Listing

Publication Analysis

Top Keywords

coii surface
32
surface
17
surface concentration
16
coii
12
inner sphere
12
surface complexes
12
surface concentrations
12
favors formation
12
preparation supported
8
supported catalysts
8

Similar Publications

Directed coordination of C/N-termini of cyano group in metal hexacyanoferrates to efficient palladium recovery: Enhanced adsorption affinity and selectivity.

Environ Res

December 2024

Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China. Electronic address:

N-termini Cyano group (CN) in metal hexacyanoferrates (MHCF) have been identified as specific-affinity sites for palladium (Pd), but C-termini CN do not effectively serve as Pd adsorption sites due to their stronger bonds with the metal ligands (M), which reduces the activity and density of CN. Herein, the optimization of directional coordination of cyano group C/N-termini by modulating the electronic structure of the M (Fe, Co, and Ni) in MHCF was investigated to reinforce the Pd recovery. Spectroscopic analyses and DFT calculations revealed that NiHCF exhibited N-site mono-coordination, whereas CoHCF displayed C-site mono-coordination due to spin-exchange interactions, leading to the strengthened N-Co bonds and weakened Fe-C bonds.

View Article and Find Full Text PDF

Selective recovery of Co(II), Mn(II), Cu(II), and Ni(II) by multiple step batch treatments with nanocellulose products.

Environ Sci Pollut Res Int

December 2024

Cellulose, Paper and Advanced Water Treatments Research Group, Department of Chemical Engineering, Complutense University of Madrid, Avda. Complutense S/N, Madrid, Spain.

The recovery of Co(II), Mn(II), Ni(II), and Cu(II) from black mass e-waste solutions through cellulose nanofibers (CNFs) and nanocrystals (CNCs) was investigated. These materials were synthetized by TEMPO-oxidation followed by high-pressure homogenization, and acid hydrolysis, respectively. The NC characterization included the measurement of consistency, cationic demand, carboxylic content, dissolved amorphous cellulose, and transmittance at λ = 600 nm.

View Article and Find Full Text PDF

Covalent Organic Framework Controls the Aggregation of Metal Porphyrins for Enhanced Photocatalytic H Evolution.

Chem Asian J

November 2024

Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.

Article Synopsis
  • The study explores the co-assemblies of covalent organic frameworks (COFs) with metal porphyrins to enhance photocatalytic performance.
  • COF/porphyrin composites were created at room temperature, demonstrating how COF surfaces can influence the aggregation of porphyrins.
  • Results showed that despite having lower porphyrin loading, COF/NiTCPP achieved the highest photocatalytic H evolution rate compared to other porphyrin combinations, highlighting a new avenue for developing efficient photocatalysts.
View Article and Find Full Text PDF

Context: In this paper, we present a theoretical study on the complexation of Co(II), Ni(II), and Cu(II) with a pyrazinamide ligand (PZA), which plays an important role in the treatment of tuberculosis and has biological and pharmacological benefits. It is a hybrid organic/inorganic material involving coordination between a metal ion and PZA ligand containing different coordination sites. This allows it to have different binding modes with metal ions and, therefore, provides a versatile ability to coordinate with metals.

View Article and Find Full Text PDF

Sorption of metal ions onto PET-derived microplastic fibres.

Environ Sci Process Impacts

December 2024

School of Chemistry and Chemical Engineering, University of Surrey, Guildford, Surrey GU2 7XH, UK.

Article Synopsis
  • This study explored how microplastic polyester fibers, specifically polyethylene terephthalate (PET), can absorb various metal ions found in sewage.
  • The research found that PET fibers could effectively retain metal ions like lead, cadmium, and mercury, with lead showing the highest absorption capacity.
  • The findings suggest that when these microplastics are present in sewage treatment, they can contribute to the transfer of hazardous metals into the environment, particularly when sewage sludge is used on agricultural land.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!