Prostate cancer (PCA) is the leading cause of cancer mortality among older men in Western countries. Epidemiological studies have shown correlation between a lower risk of PCA and a higher consumption of antioxidants. However, the mechanism by which antioxidants exert their effects is still unknown. In the present study, we explored the signaling mechanism through which unique natural antioxidant derived from spinach extract (NAO) exerts their beneficial effects in the chemoprevention of PCA using human PC3 cells. Probing into the effect of NAO and its derived polyphenols on cell-cycle G1 arrest, we found that they cause cell-cycle prolongation. NAO and its two derived purified components exhibited a significant increase in the level of p21cip1 expression after 36 h of starvation, followed by 18 h of treatment with NAO in the presence of serum. In addition, under similar conditions, the expressed level of Cyclin A and CDK-2 in the PC3 cells was significantly reduced after treatment with NAO or its purified components. Immunoblot analysis demonstrated a significant increase in the hypophosphorylated form of pRb and a decrease in ppRb. NAO and its purified derived components were found to downregulate the protein expression of another member of the pRb family, p107, as well as that of E2F-1. These results suggest that NAO-induced G1 delay and cell cycle prolongation are caused by downregulation of the protein expression of ppRb and E2F in the human PCA cell line PC3.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.febslet.2004.06.101DOI Listing

Publication Analysis

Top Keywords

purified components
12
unique natural
8
derived purified
8
cell cycle
8
pprb e2f
8
e2f human
8
human pc3
8
prostate cancer
8
pc3 cells
8
nao derived
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!