Non-enzymatic platelet-activating factor formation by acetylated proteins.

FEBS Lett

Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, Ioannina 45110, Greece.

Published: August 2004

AI Article Synopsis

Article Abstract

Substantial amounts of platelet-activating factor (PAF 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine), the potent phospholipid mediator of allergic and inflammatory reactions, are formed upon incubation of acetylated low-density lipoprotein, acetylated bovine serum albumin (BSA) and acetylated apolipoprotein A-I with 1-0-hexadecyl-sn-glycero-3-phosphocholine (lyso-PAF). Acetylated BSA produced 0.3 nmol PAF/mg of protein after a 6 h incubation period with 40 microM lyso-PAF. The transfer of acetate bound to acetylated proteins to lyso-PAF was non-enzymatic. Chemical PAF formation by acetylated proteins, involved in lipid metabolism and transport, could lead to complication of inflammatory and allergic events.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.febslet.2004.07.037DOI Listing

Publication Analysis

Top Keywords

acetylated proteins
12
platelet-activating factor
8
formation acetylated
8
acetylated
7
non-enzymatic platelet-activating
4
factor formation
4
proteins substantial
4
substantial amounts
4
amounts platelet-activating
4
factor paf
4

Similar Publications

Glutamine, Serine and Glycine at Increasing Concentrations Regulate Cisplatin Sensitivity in Gastric Cancer by Posttranslational Modifications of KDM4A.

Mol Carcinog

January 2025

Department of Gastrointestinal Oncology, Central Laboratory and Precision Medicine Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China.

Gastric cancer is a common digestive system tumor with a high resistance rate that reduces the sensitivity to chemotherapy. Nutrition therapy is an important adjuvant approach to favor the prognosis of gastric cancer. Dietary amino acids contribute greatly to gastric cancer progression by mediating tumor gene expressions, epigenetics, signal transduction, and metabolic remodeling.

View Article and Find Full Text PDF

Protocadherin 19 (PCDH19) is an adhesion molecule involved in cell-cell interaction whose mutations cause a drug-resistant form of epilepsy, named PCDH19-Clustering Epilepsy (PCDH19-CE, MIM 300088). The mechanism by which altered PCDH19 function drive pathogenesis is not yet fully understood. Our previous work showed that PCDH19 dysfunction is associated with altered orientation of the mitotic spindle and accelerated neurogenesis, suggesting a contribution of altered cytoskeleton organization in PCDH19-CE pathogenesis in the control of cell division and differentiation.

View Article and Find Full Text PDF

Background: Numerous pathogenic variants causing human oocyte maturation arrest have been reported on the primate-specific TUBB8 gene. The main etiology is the dramatic reduction of tubulin α/β dimer, but still large numbers of variants remain unexplained.

Methods: Using microinjection mRNA and genome engineering to reintroduce the conserved pathogenic missense variants into oocytes or in generating TUBB8 variant knock-in mouse models, we investigated that the human deleterious variants alter microtubule nucleation and spindle assembly during meiosis.

View Article and Find Full Text PDF

Sirtuin 2 exacerbates renal tubule injury and inflammation in diabetic mice via deacetylation of c-Jun/c-Fos.

Cell Mol Life Sci

January 2025

Department of Nephrology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Rd, Changsha, Hunan, 410013, China.

Diabetic nephropathy (DN) is a serious complication of diabetes, and inflammation plays a crucial role. Sirtuin 2 (SIRT2), a NAD+-dependent deacetylase, which is involved in the regulation of cell metabolism, proliferation and longevity through deacetylation. Our previous research showed a positive correlation between urinary SIRT2 levels and renal injury markers in DN patients.

View Article and Find Full Text PDF

Purpose: This study seeks to investigate the fundamental molecular processes through which histone deacetylase 9 (HDAC9) governs the proliferation of glomerular mesangial cells in the context of immunoglobulin A nephropathy (IgAN) and to identify novel targets for clinical research on IgAN.

Methods: Data from high-throughput RNA sequencing for IgAN were procured from the Gene Expression Omnibus database to assess the expression profiles and clinical diagnostic significance of histone deacetylase family proteins (HDACs). Blood samples from 20 IgAN patients were employed in RT-qPCR analysis, and the spearman linear regression method was utilized to analyze the clinical correlation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!