Structural analysis of a non-redundant data set of 47 immunoglobulin (Ig) proteins was carried out using a combination of criteria: atom--atom contact compatibility, position occupancy rate, conservation of residue type and positional conservation in 3D space. Our analysis shows that roughly half of the interface positions between the light and heavy chains are specific to individual structures while the other half are conserved across the database. The tendency for conservation of a primary subset of positions holds true for the intra-domain faces as well. These subsets, with an average of 12 conserved positions and a contact surface of 630 A(2), delineate the inter- and intra-domain core, a refined instrument with a reduced target for analysis of sheet--sheet interactions in sandwich-like proteins. Employing this instrument, we find that a majority of Ig interface core positions are adjoined in sequence to domain core positions. This was derived independent of geometric considerations, however beta-sheet side-chain geometry clearly dictates it. The geometric wedding of the domain and interface cores supports the concept of a rigid-like substructure on the protein surface involved in complex formation and indicates a close relationship between surface determinants and those involved in protein folding of Ig domains. The definitions developed for the Ig interface and domain cores proved satisfactory to extract first-approximation cores for a group of 24 non-Ig sandwich-like proteins, treated as individual structures due to their diverse strand topologies. We show that the same rule of positional connectivity between the rigid domain core and interface core extends generally to sandwich-like proteins interacting in a sheet--sheet fashion. The non-Ig structures were used as templates to analyze sandwich-like interfaces of unresolved homologous proteins using a database merging structure and sequence conservation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmb.2004.06.072 | DOI Listing |
Methods Mol Biol
November 2024
Department of Mathematics, Rutgers University, Piscataway, NJ, USA.
This chapter addresses the following fundamental question: Do sequences of protein domains with sandwich architecture have common sequence characteristics even though they belong to different superfamilies and folds? The analysis was carried out in two stages: (1) determination of domain substructures shared by all sandwich proteins and (2) detection of common sequence characteristics within the substructures. Analysis of supersecondary structures in domains of proteins revealed two types of four-strand substructures that are common to sandwich proteins. At least one of these common substructures was found in proteins of 42 sandwich-like folds (per structural classification in the CATH database).
View Article and Find Full Text PDFMikrochim Acta
October 2024
Max Planck Tandem Group in Nanobioengieneering, University of Antioquia, Complejo Ruta N, Calle 67 Nº 52-20, 050010, Medellín, Colombia.
Interleukin-6 (IL6) is a cytokine mainly involved in inflammatory processes associated with various diseases, from rheumatoid arthritis and pathogen-caused infections to cancer, where malignant cells exhibit high proliferation and overexpression of cytokines, including IL6. Furthermore, IL6 plays a fundamental role in detecting and differentiating tumor cells, including colorectal cancer (CRC) cells. Therefore, given its range of biological activities and pathological role, IL6 determination has been claimed for the diagnosis/prognosis of immune-mediated diseases.
View Article and Find Full Text PDFBioelectrochemistry
December 2024
College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China. Electronic address:
Cancer antigen 72-4 (CA72-4) is an important marker of cancer detection, and accurate detection of CA72-4 is urgently required. Herein, a sandwich-type immunosensor was constructed for detection CA72-4 based on composite nanomaterial as the substrate material and trimetal nanoparticles as the nanoprobe. The composite nanomaterial rGO-TEPA/ZIF67@ZIF8/Au used as a selective bio-recognition element were modified on the glassy carbon electrode (GCE) surface.
View Article and Find Full Text PDFNucleic Acids Res
June 2024
Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poland.
The abnormal expansion of GGGGCC/GGCCCC hexanucleotide repeats (HR) in C9orf72 is associated with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Structural polymorphisms of HR result in the multifactorial pathomechanism of ALS/FTD. Consequently, many ongoing studies are focused at developing therapies targeting pathogenic HR RNA.
View Article and Find Full Text PDFAnal Sci
July 2024
Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China.
The level of interleukin-8 (IL-8) in the body is an effective factor for the early diagnosis of acute tubular necrosis and oral tumor. In this work, a novel sandwich-like voltametric immunosensor (SVS) of IL-8 was constructed by preparing β-cyclodextrin/carbon nanotube (CD/CNT) to immobilize primary antibody (PAb) of IL-8 and UIO-66-NH MOFs structure to immobilize second antibody (SAb) and methylene blue (Mb) probe. In this designed SVS, the prepared CD/CNT nanohybrid with large surface area and conductivity can immobilize PAb via simple host-guest recognition, and UIO-66-NH provided an ideal platform to accommodate SAb and a large number of Mb molecules as signal-amplifier.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!