In Saccharomyces cerevisiae the pH-dependent growth inhibition of the heavy metals Cu(2+), Cr(6+), Zn(2+), Co(2+), and Cd(2+) was examined in comparison to that of organic solvents and pure compounds DMSO, MNNG, 4-NQO, MTBE, ethanol, and 2-AA. The assay was based on both S. cerevisiae wild-type and genetically modified cells deleted in the transporters Pdr5, Snq2, and Yor1 that facilitate pleiotropic drug resistance to explore the potential for short-term chronic aquatic toxicity tests. The strain deleted in the proteins that mediate the efflux of structurally diverse hydrophobic compounds exhibited high sensitive growth inhibition at low (0.04 mg/L 4-NQO) to moderate (5.5 mg/L DMSO) organic compound exposure. At pH 6.4 the EC(50)'s, for all tested heavy metals were significantly low, in contrast to acidic pH conditions, in which both strains were able to grow in the presence of high concentrations of the transition metals Cu(2+), Zn(2+), and Co(2+), with the pdr5 yor1 snq2 mutant being more tolerant. Cd(2+) exerted the highest toxicity, with an EC(50) of 0.49 mg/L. Obtained results were compared with data determined from growth-inhibition tests involving other unicellular species. The comparison provided evidence that yeast is a sensitive and practical model system for toxicological risk assessment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2004.06.002 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Cancer Biology & Genetics Program, Sloan Kettering Institute, New York, NY 10065.
Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas and the primary cause of mortality in patients with neurofibromatosis type 1 (NF1). These malignancies develop within preexisting benign lesions called plexiform neurofibromas (PNs). PNs are solely driven by biallelic loss eliciting RAS pathway activation, and they respond favorably to MEK inhibitor therapy.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602.
is a dominant member of the human gut microbiome and produces short-chain fatty acids (SCFAs). These promote immune system function and inhibit inflammation, making this microbe important for human health. Lactate is a primary source of gut SCFAs but its utilization by has not been explored.
View Article and Find Full Text PDFInt J Radiat Biol
January 2025
Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei City, Taiwan.
Purpose: Breast cancer ranks as the most prevalent cancer in women, characterized by heightened fatty acid synthesis and glycolytic activity. Fatty acid synthase (FASN) is prominently expressed in breast cancer cells, regulating fatty acid synthesis, thereby enhancing tumor growth and migration, and leading to radioresistance. This study aims to investigate how FASN inhibition affects cell proliferation, migration, and radioresistance in breast cancer, as well as the mechanisms involved.
View Article and Find Full Text PDFJ Med Chem
January 2025
State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.
MTDH-SND1 protein-protein interaction (PPI) plays an important role in the initiation and development of tumors, and it is a target for the treatment of breast cancer. In this study, we identified and synthesized a series of novel small-molecule inhibitors of MTDH-SND1 PPI. The representative compound showed potent activity against MTDH-SND1 PPI with an IC of 487 ± 99 nM and tight binding to the SND1-purified protein with a value of 279 ± 17 nM.
View Article and Find Full Text PDFMedicine (Baltimore)
January 2025
Opthalmology, Chongqing Hechuan District People's Hospital, Chongqing, China.
Background: Bushen-Huoxue-Mingmu-Formula (MMF) has achieved definite clinical efficacy. However, its mechanism is still unclear.
Objective: Investigating the molecular mechanism of MMF to protect retinal ganglion cells (RGCs).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!