Developmental and organ-specific expression of an ABA- and stress-induced protein in barley.

Plant Mol Biol

Department of Biology, Washington University, St. Louis, MO 63130.

Published: February 1992

AI Article Synopsis

Article Abstract

An mRNA species, HVA1, has been shown to be rapidly induced by abscisic acid (ABA) in barley aleurone layers (Hong, Uknes and Ho, Plant Mol Biol 11: 495-506, 1988). In the current work we have investigated the expression of HVA1 in other organs of barley plants. In developing seeds, HVA1 mRNA is not detected in starchy endosperm cells, yet it accumulates in aleurone layers and embryo starting 25 days after anthesis, and its level remains high in these organs in dry seeds. Although the levels of HVA1 mRNA are equivalent in the dry embryos of dormant and nondormant barley seeds, upon imbibition HVA1 mRNA declines much slower in the dormant than in the nondormant embryos. The HVA1 mRNA and protein levels are highly induced by ABA treatment in all organs of 3-day-old seedlings. However, the induction in the leaf of 7-day-old seedlings is less than one tenth the level observed in the leaf of 3-day-old seedlings. In the leaf, HVA1 mRNA and protein are induced mainly at the base. These observations indicate that the expression of HVA1 is under developmental regulation. Besides the HVA1 protein, a smaller protein (p20) of approximately 20 kDa cross-reacting with anti-HVA1 polyclonal antibodies, is induced by ABA in barley seedlings but not in seeds. HVA1 mRNA is induced by drought, NaCl, cold or heat treatment. Similar to ABA treatment, the drought induction of HVA1 occurs in all the tissues of 3-day-old seedlings, but the induction decreases dramatically in the leaf of 7-day-old plants. The significance of organ-specific, developmentally regulated, and stress-induced expression of HVA1 is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00020009DOI Listing

Publication Analysis

Top Keywords

hva1 mrna
24
hva1
12
expression hva1
12
3-day-old seedlings
12
aba barley
8
aleurone layers
8
seeds hva1
8
dormant nondormant
8
mrna protein
8
induced aba
8

Similar Publications

To investigate the crosstalk of abscisic acid (ABA) and gibberellin (GA) signaling in wheat (Triticum aestivum), we have focused on the transcription factor TaABF1. TaABF1 (a member of the ABA response element binding factor family) physically interacts with PKABA1, a signaling component in the ABA-suppression of GA-induced gene expression in cereal grains. Constitutive expression of TaABF1 in aleurone cells of imbibing grains completely eliminated GA-induced expression from the Amy32b promoter.

View Article and Find Full Text PDF

The molecular mechanism by which GA regulates plant growth and development has been a subject of active research. Analyses of the rice (Oryza sativa) genomic sequences identified 77 WRKY genes, among which OsWRKY71 is highly expressed in aleurone cells. Transient expression of OsWRKY71 by particle bombardment specifically represses GA-induced Amy32b alpha-amylase promoter but not abscisic acid-induced HVA22 or HVA1 promoter activity in aleurone cells.

View Article and Find Full Text PDF

The phytohormone abscisic acid (ABA) induces genes-encoding proteins involved in desiccation tolerance and dormancy in seeds, but ABA also suppresses gibberellin (GA)-responsive genes encoding hydrolytic enzymes essential for postgermination growth. A unique serine/threonine protein kinase, PKABA1 mRNA, up-regulated by ABA in seeds, has been identified. In this report, the effect of PKABA1 on the signal transduction pathway mediating ABA induction and suppression of genes has been determined in aleurone layers of barley seeds.

View Article and Find Full Text PDF

The level of expression of the group 3 late embryogenesis abundant abscisic acid-regulated gene (HVA1) to cold treatment has been studied in winter barley (Hordeum vulgare) seedling tissue. The cDNA clone (pHVA1) encoding this late embryogenesis abundant protein was used as a hybridization probe to detect the corresponding mRNA. Expression of the HVA1 gene was determined after the tissue had been subjected to a regimen of 2 degrees C exposure (cold acclimation), followed by a return to 25 degrees C growth conditions (deacclimation).

View Article and Find Full Text PDF

An mRNA species, HVA1, has been shown to be rapidly induced by abscisic acid (ABA) in barley aleurone layers (Hong, Uknes and Ho, Plant Mol Biol 11: 495-506, 1988). In the current work we have investigated the expression of HVA1 in other organs of barley plants. In developing seeds, HVA1 mRNA is not detected in starchy endosperm cells, yet it accumulates in aleurone layers and embryo starting 25 days after anthesis, and its level remains high in these organs in dry seeds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!