Background: Activation of protein kinase C (PKC) is a major signaling pathway for transforming growth factor (TGF)-beta to induce extracellular matrix (ECM) production in diabetic nephropathy (DN). PKC also activates mitogen-activated protein kinase (MAPK), which is called the PKC-MAPK pathway. The PKC-MAPK pathway is probably responsible for PKC-related abnormalities in diabetic glomeruli. To confirm the involvement of this pathway, we determined the localization and expression of mRNAs in glomeruli by in situ hybridization method.
Methods: In the present study, we examined expression of PKCbeta1, MAPK/ERK kinase (MEK) 1, MEK2, extracellular signal-regulated protein kinase (ERK) 1, ERK2, and TGF-beta1 mRNAs using renal tissue samples from kidneys affected by DN (N= 21) and from normal human kidney (NHK; N= 6). We also performed an immunohistochemical study using anti-phosphorylated MEK1/2 (P-MEK) and ERK1/2 (P-ERK) antibodies. The glomerular severity of DN was classified into three groups according to mesangial expansion: D1 (N= 4), D2 (N= 13), and D3 (N= 4). We analyzed differences and correlations between variables.
Results: In the glomeruli, the number of cells that stained for these mRNAs in DN was significantly higher than in NHK. The expression of PKC-MAPK pathway mRNAs tended to be inversely proportional to the degree of mesangial expansion. The P-MEK and P-ERK signal intensity were parallel to its mRNA expression pattern. Furthermore, there were significant correlations among the P-MEK, P-ERK signal intensity, PKCbeta1 mRNA expression.
Conclusion: Our results suggest that high expression of PKC-MAPK pathway mRNAs plays an important role in the development and/or progression of early tissue damage in DN.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1523-1755.2004.00798.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!